基于激光测距仪的旋翼飞行器位置估计算法
Position Estimation Algorithm for Rotorcraft Based on Laser Range Finder
DOI: 10.12677/DSC.2017.64024, PDF, HTML, XML, 下载: 1,448  浏览: 2,439  国家自然科学基金支持
作者: 谭贵芳, 蔡晨晓:南京理工大学自动化学院,江苏 南京
关键词: 旋翼飞行器激光测距仪ICP算法EKF算法位置Rotorcraft Laser Scanner ICP Algorithm EKF Algorithm Position
摘要: 本文通过采用激光测距仪获取周围环境的信息,运用迭代最近点(Iterative Closest Point, ICP)算法计算出位置,并通过对扩展卡尔曼滤波(Extended Kalman Filter, EKF)算法的改进,减少EKF算法的计算量,使旋翼飞行器能更加快速的实现对位置的估计。该算法通过在预测更新的过程中引进ICP算法计算的结果构建过程模型,并在测量更新过程中通过对环境中线段特征的提取,构建观测模型,结合飞控能够提供较为精确的角度信息的特点,简化观测模型的表达式,最终得到准确的位置信息。
Abstract: In this paper, the environment information is captured and the position of rotorcraft is calculated by using laser scanner and using iterative closest point (ICP) algorithm. It could estimate the posi-tion more rapid and accurate by improving the extended Kalman filter (EKF) algorithm which re-duces the amount of computation. The trajectory model of rotorcraft will be constructed by com-bining and fusing the ICP and improved EKF algorithms to update the prediction. In the process of updating, the observed environment model will be sketched through extracting line features for surrounding of the rotorcraft. Then the model expression is simplified according to the accurate attitude angles of rotorcraft which come from Inertial Measurement Unit (IMU) sensor. Finally, location information is estimated accurately for the rotorcraft via simulation and experiment.
文章引用:谭贵芳, 蔡晨晓. 基于激光测距仪的旋翼飞行器位置估计算法[J]. 动力系统与控制, 2017, 6(4): 187-194. https://doi.org/10.12677/DSC.2017.64024

参考文献

[1] 段世华. 四旋翼飞行器控制系统的设计和实现[D]: [硕士学位论文]. 北京: 电子科技大学, 2012.
[2] 吴中杰. 四旋翼飞行器设计及其姿态控制[D]: [硕士学位论文]. 南京:东南大学, 2012.
[3] Mao, G., Drake, S. and Anderson, B.D.O. (2007) Design of an Extended Kalman Filter for UAV Localization. Information, Decision and Control, 224-229.
https://doi.org/10.1109/IDC.2007.374554
[4] Lange, S., Sunderhauf, N. and Protzel, P. (2009) A Vision Based Onboard Approach for Landing and Position Control of an Autonomous Multirotor UAV in GPS-Denied Environments. International Conference on Advanced Robotics, 1-6.
[5] 隋婧, 金伟其. 双目立体视觉技术的实现及其进展[J]. 电子技术应用, 2004, 30(10): 4-6.
[6] Borenstein, J. and Koren, Y. (2002) The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots. IEEE Transactions on Robotics & Automation, 7, 278-288.
https://doi.org/10.1109/70.88137
[7] 任立敏. 基于激光测距仪的移动机器人障碍感知与避障策略研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2007.
[8] 彭晟远. 基于激光测距仪的室内机器人SLAM研究[D]: [硕士学位论文]. 武汉: 武汉科技大学, 2012.
[9] 徐晓东. 移动机器人几何–拓扑混合地图构建及定位研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2005.
[10] Luo, C., Mcclean, S.I., Parr, G., et al. (2013) UAV Position Es-timation and Collision Avoidance Using the Extended Kalman Filter. IEEE Transactions on Vehicular Technology, 62, 2749-2762.
https://doi.org/10.1109/TVT.2013.2243480
[11] Li, R., Liu, J. and Zhang, L. (2014) LIDAR/MEMS IMU Inte-grated Navigation (SLAM) Method for a Small UAV in Indoor Environments. Inertial Sensors and Systems Symposium, Karlsruhe, 16-17 September 2014, 1-15.
https://doi.org/10.1109/InertialSensors.2014.7049479
[12] 祝继华, 郑南宁, 袁泽剑, 等. 基于ICP算法和粒子滤波的未知环境地图创建[J]. 自动化学报, 2009, 35(8): 1107-1113.
[13] Hiremath, S.A., van der Heijden, G.W.A.M., Evert, F.K.V., et al. (2014) Laser Range Finder Model for Autonomous Navigation of a Robot in a Maize Field Using a Particle Filter. Computers & Electronics in Agriculture, 100, 41-50.
https://doi.org/10.1016/j.compag.2013.10.005
[14] Grisetti, G., Kummerle, R., Stachniss, C., et al. (2011) A Tu-torial on Graph-Based SLAM. IEEE Intelligent Transportation Systems Magazine, 2, 31-43.
https://doi.org/10.1109/MITS.2010.939925
[15] Daum, F. (2005) Nonlinear Filters: Beyond the Kalman Filter. IEEE Aerospace & Electronic Systems Magazine, 20, 57-69.
https://doi.org/10.1109/MAES.2005.1499276
[16] 曲仕茹, 马志强. 改进的粒子滤波在四旋翼姿态估计中的应用[J]. 飞行力学, 2013, 31(5): 458-461.
[17] Cui, J. (2014) Navigation of Unmanned Aerial Vehicles in GPS-Denied Environments. Ph.D. Thesis, National University of Singapore, Singapore, 92-104.
[18] 王龙, 章政, 王立. 改进扩展卡尔曼滤波的四旋翼姿态估计算法[J]. 计算机应用, 2017, 37(4): 1122-1128.
[19] Perera, A.G.A., Srinivas, C., Hoogs, A., et al. (2006) Multi-Object Tracking through Simultaneous Long Occlusions and Split-Merge Conditions. 2006 IEEE Computer Society Conference, New York, 17-22 June 2006, 666-673.
https://doi.org/10.1109/CVPR.2006.195
[20] Jensfelt, P. and Christensen, H.I. (2001) Pose Tracking Using Laser Scanning and Minimalistic Environmental Models. IEEE Transactions on Robotics & Automation, 17, 138-147.
https://doi.org/10.1109/70.928559