PM  >> Vol. 7 No. 6 (November 2017)

    MB-矩阵子直和仍为MB-矩阵的条件
    Conditions That Subdirect Sums of MB-Matrices Is Still MB-Matrices

  • 全文下载: PDF(451KB) HTML   XML   PP.422-430   DOI: 10.12677/PM.2017.76055  
  • 下载量: 639  浏览量: 832  

作者:  

骆 毅:云南大学数学与统计学院,云南 昆明

关键词:
Z-矩阵非奇异M-矩阵MB-矩阵子直和Z-Matrix Nonsingular M-Matrix MB-Matrix Subdirect Sum

摘要:

通过将MB-矩阵分裂成一个非奇异M-矩阵和一个秩1非负矩阵之和,获得MB-矩阵的子直和仍为MB-矩阵的一些充要条件和充分条件,最后用数值例子对所给结论进行了说明和解释。

By splitting an MB-matrix A into a sum of a nonsingular M-matrix and a nonnegative rank 1 matrix, some sufficient and necessary conditions and some sufficient conditions are given such that the subdirect sum of two MB-matrices is still an MB-matrix. Some examples are also given to illustrate the results.

文章引用:
骆毅. MB-矩阵子直和仍为MB-矩阵的条件[J]. 理论数学, 2017, 7(6): 422-430. https://doi.org/10.12677/PM.2017.76055

参考文献

[1] Fallat, S.M. and Johnson, C.R. (1999) Sub-Direct Sums and Positivity Classes of Matrices. Linear Algebra & Its Applications, 288, 149–173.
https://doi.org/10.1016/S0024-3795(98)10194-5
[2] Bru, R., Pedroche, F. and Szyld, D.B. (2005) Subdirect Sums of Nonsingular M-Matrices and of Their Inverse. Electronic Journal of Linear Algebra Ela, 13, 162–174.
https://doi.org/10.13001/1081-3810.1159
[3] Zhu, Y., Huang, T.Z. and Liu, J. (2009) Subdirect Sums of H-matrices. International Journal of Nonlinear Science, 1, 50-58.
[4] Zhu, Y. and Huang, T.Z. (2007) Subdirect Sum of Doubly Diagonally Dominant Matrices. Electronic Journal of Linear Algebra Ela, 16, 171-182.
https://doi.org/10.13001/1081-3810.1192
[5] 骆毅, 李耀堂. MB-矩阵的子直和[J]. 应用数学进展, 2017, 6(3): 338-347.
[6] Berman, A. and Plemmons, R.J. (1994) Nonnegative Matrix in the Mathematical Sciences. SIAM Publisher, Philadelphia.
[7] Pena JM. (2003) On an Alternative to Gershgorin Circles and Ovals of Cassini. Numerische Mathematik, 95, 337-345.
https://doi.org/10.1007/s00211-002-0427-8
[8] Jose, S. and Sivakumar, K.C. (2013) On Inverse-Positivity of Sub-Direct Sums of Matrices. Linear Algebra and Its Applications, 439, 1670-1677.
https://doi.org/10.1016/j.laa.2013.05.001