分子机器中链状分子热传导性质的理论研究
Theoretical Study on the Heat Conductivities of Chain Molecules in Molecular Machines
DOI: 10.12677/MP.2017.76026, PDF, HTML, XML,  被引量 下载: 1,553  浏览: 2,538 
作者: 黄建平*:湖南师范大学信息科学与工程学院,湖南 长沙;唐 婧:湖南师范大学物理与信息科学学院,湖南 长沙
关键词: 链状分子热传导系数能量通量声子谱线宽度晶格动力学Chain Molecule Heat Conductivity Energy Flux Linewidth of Phonon Lattice Dynamics
摘要: 运用晶格动力学理论推导了分子机器中链状分子振动的能量通量公式,在此基础上再应用格林–久保公式推导了链状分子的热传导系数公式。由于计算链状分子的热传导系数时需要声子的谱线宽度,因此还推导了声子谱线宽度公式。数值计算结果表明,链状分子的热传导系数随着其长度的增加而增加,并且在其长度趋于无限时而趋于无限;等长的链状分子热传导系数与环状分子热传导系数有很大的差异。数值计算结果还表明,长链状分子的热传导系数主要来自于短波矢声子的贡献。
Abstract: The formula for energy flux of chain molecule vibrations in molecular machines was derived based on the lattice dynamics, and then the formula for heat conductivities of chain molecules was derived based on energy flux formula and Green-Kubo formula. In view of the fact that the linewidths of all phonons should be needed during the calculations of the heat conductivities of chain molecules, the formula for phonons’ linewidths was derived based on lattice dynamics and Green’s function theory. Finally the numerical calculations were carried out, and the results show that the heat conductivities of chain molecules increase and tend to infinity when their lengths increase and tend to infinity, and there is a big difference between the heat conductivities of a chain molecule and a cyclic molecule with the same length. The numerical results also show that the main contributions to the heat conductivities of long chain molecules were made by phonons with short wave vectors.
文章引用:黄建平, 唐婧. 分子机器中链状分子热传导性质的理论研究[J]. 现代物理, 2017, 7(6): 227-234. https://doi.org/10.12677/MP.2017.76026

参考文献

[1] Cheng, C., Stoddart, J.F. (2016) Wholly Synthetic Molecular Machine. Materials Chemistry and Physics, 17, 1780- 1793.
https://doi.org/10.1002/cphc.201501155
[2] Ruangsupapichat, N., Pollard, M.M., Harutyunyan, S.R., et al. (2011) Reversing the Direction in a Light-Driven Rotary Molecular Motor. Nature Chemistry, 3, 53-60.
https://doi.org/10.1038/nchem.872
[3] Kudernac, T., Ruangsupapichat, N., Parschau, M., et al. (2011) Electrically Driven Directional Motion of a Four-Wheeled Molecule on a Metal Surface. Nature, 479, 208-211.
https://doi.org/10.1038/nature10587
[4] Badjic, J.D., Balzani, V., Credi, A., et al. (2004) A Molecular Elevator. Science, 303, 1845-1849.
https://doi.org/10.1126/science.1094791
[5] Liu, Y., Flood, A.H., Bonvallet, P.A., et al. (2005) Linear Artificial Molecular Muscles. Journal of the American Chemical Society, 127, 9745-9759.
https://doi.org/10.1021/ja051088p
[6] Koumura, N., Zijlstra, R.W., Van Delden, R.A., et al. (1999) Light-Driven Monodirectional Molecular Rotor. Nature, 401, 152-155.
[7] 黄建平, 唐婧. 分子机器中环状分子热传导性质的理论研究[J]. 现代物理, 2017, 7(5): 169-174.
[8] 唐婧, 黄建平. 分子机器中链状分子热膨胀性质的理论研究[J]. 现代物理,2017, 7(6): 221-226
[9] Frizzera, W., Viliani, G., Montagna, M., et al. (1997) One-Dimensional Dynamics of Lattice Thermal Transport. Journal of Physics: Condensed Matter, 9, 10867-10879.
[10] Semwal, B.S. and Sharma, P.K. (1972) Heat Conductivity of an Anharmonic Crystal. Physical Review B, 5, 3909-3913.
https://doi.org/10.1103/PhysRevB.5.3909
[11] Maradudin, A.A. and Fein, A.E. (1973) Scattering of Neutrons by an Anharmonic Crystal. Physical Review B, 7, 2589-2608.
[12] Turney, J.E., Landry, E.S., Mcgaughey, A.J.H., et al. (2009) Predicting Phonon Properties and Heat Conductivity from Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations. Physical Review B, 79, Article ID: 064301.
[13] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算[J]. 物理学报, 2013, 62(18): 1-7.
[14] Hyzorek, K. and Tretiakov, K.V. (2016) Thermal Conductivity of Liquid Argon in Nanochannels from Molecular Dynamics Simulations. The Journal of Chemical Physics, 144, Article ID: 194507.
https://doi.org/10.1063/1.4949270
[15] Zhao, Y., Xue, B. X., Wang, Y.M., et al. (2009) Thermal Transport in One-Dimensional FPU-FK Lattices. Communications in Theoretical Physics, 52, 507-510.
[16] Dhar, A. (2008) Heat Transport in Low-Dimensional Systems. Advances in Physics, 57, 457-537.