基于红外光源的全场OCT理论设计
Theoretical Design of the Full-Field OCT Based on Infrared Light
DOI: 10.12677/APP.2017.711037, PDF, HTML, XML, 下载: 1,703  浏览: 3,288  科研立项经费支持
作者: 王一鸣, 王 婷, 田 宁*:沈阳师范大学物理科学与技术学院,辽宁 沈阳;吴 闯:沈阳师范大学实验教学中心,辽宁 沈阳
关键词: 红外光源全场光学相干层析生物组织Infrared Light Full-Field Optical Coherence Tomography Biological Tissue
摘要: 设计改良了一套基于迈克尔逊干涉仪和可见光源的全场光学相干层析成像(全场OCT)系统,以获得高质量的全场OCT图像。不同于大多数全场OCT所使用的光源,本系统以改进的卤钨白炽灯为红外光源,理论上不仅提高了全场OCT系统的分辨率和成像深度,并且对拍摄的生物组织样品做到了无损成像。为实现对活体细胞的高分辨率光学相干层析成像提供了切实可行的方法。
Abstract: In order to obtain the high-quality images, this work improved the traditional full-field optical coherence tomography (full-field OCT) which was based on the Michelson interferometer and visible light. Unlike the common light used in the most OCT, this paper design to substitute the halogen lamp with the infrared light. This design could improve the resolution and the detecting depth, and could achieve the noninvasive optical imaging. This paper provided a practical way for the noninvasive live-cell imaging based on the full-field OCT.
文章引用:王一鸣, 王婷, 吴闯, 田宁. 基于红外光源的全场OCT理论设计[J]. 应用物理, 2017, 7(11): 299-303. https://doi.org/10.12677/APP.2017.711037

参考文献

[1] Hu, B., Jiang, X.F., Shi, X.H., et al. (2016) Application of Full-Field Optical Coherence Tomography for Cell Imaging. Chinese Journal of Quantum Electronics, 33, 437-443.
[2] De CastroAbeger, A.H., De Carlo, T.E., Duker, J.S., Baumal, C.R. (2015) Optical Coherence Tomography Angiography Compared to Fluorescein Angiography in Branch Retinal Artery Occlusion. Ophthalmic Surgery Lasers & Imaging Retina, 46, 1052-1054.
https://doi.org/10.3928/23258160-20151027-12
[3] Mamalis, A., Ho, D. and Jagdeo, J. (2015) Optical Coherence Tomography Imaging of Normal, Chronologically Aged, Photoaged and Photodamaged Skin: A Systematic Review. Dermatologic Surgery, 41, 993-1005.
https://doi.org/10.1097/DSS.0000000000000457
[4] 刘小宁, 杨跃进, 吴永健, 等. 光学相干断层成像方法评价冠状动脉介入治疗术后即刻药物洗脱支架贴壁情况[J]. 中国循环杂志, 2013, 28(5): 356-359.
[5] Yoo, H., Kim, J.W., Shishkov, M., et al. (2011) Intra-Arterial Catheter for Simultaneous Microstructural and Molecular Imaging In Vivo. Nature Medicine, 17, 1680-1684.
https://doi.org/10.1038/nm.2555
[6] Fard, A.M., Vacas-Jacques, P., Hamidi, E., et al. (2013) Optical Coherence Tomography—Near Infrared Spectroscopy System and Catheter for Intravascular Imaging. Optics Express, 21, 30849-30858.
https://doi.org/10.1364/OE.21.030849
[7] Shimada, Y., Sadr, A., Burrow, M.F., et al. (2010) Validation of Swept-Source Optical Coherence Tomography(SS-OCT) for the Diagnosis of Occlusal Caries. Journal of Dentistry, 38, 655.
https://doi.org/10.1016/j.jdent.2010.05.004
[8] Zheng, J., Lu, D., Chen, T., et al. (2012) Lable-Free Subcellular 3D Live Imaging of Preimplantation Mouse Embryos with Full-Field Optical Coherence Tomography. Journal of Biomedical Optics, 17, 0705031-0705033.
https://doi.org/10.1117/1.JBO.17.7.070503
[9] Dubois, A., Moneron, G., Grieve, K., et al. (2004) Three-Dimensional Cellular-Level Imaging Using Full-Field Optical Coherence Tomography. Physics in Medicine & Biology, 49, 1227-1234.
https://doi.org/10.1088/0031-9155/49/7/010
[10] 姚叙红, 朱林泉, 薛忠晋. 菲涅尔透镜提高太阳能利用效率的研究[J]. 红外, 2009, 30(3): 30-34.
[11] Sacchet, D., Moreau, J., Georges, P., et al. (2008) Simultaneous Dual-Band Ultra-High Resolution Full-Field Optical Coherence Tomography. Optics Express, 16, 19434-19446.
https://doi.org/10.1364/OE.16.019434