# 具p-Laplacian算子的分数阶脉冲微分方程边值问题解的存在性Existence of Solutions for Fractional Impulsive Differential Equations with p-Laplacian Operator

DOI: 10.12677/PM.2017.76057, PDF, HTML, XML, 下载: 845  浏览: 1,033  科研立项经费支持

Abstract: In this paper, we discuss the existence of solutions of boundary value problems for a class of fractional impulsive differential equations. Some fixed point theorems are used to obtain sufficient conditions for the existence of solutions of Impulsive Differential Equations.

 [1] 侯传霞, 李勇. 含有p-Laplacian算子的脉冲边值问题解的存在性[J]. 科学技术与工程, 2005, 9(3): 4114-4116. [2] Chen, T.Y. (2012) An Anti-Periodic Boundary Value Problem for the Fractional Differential Equation with a p-Laplacian Operator. Applied Mathematics Letters, 25, 1671-1675. https://doi.org /10.1016/j.aml.2012.01.035 [3] 宋利梅. 具p-Laplacian算子的分数阶微分方程边值问题的正解[J]. 高校应用数学学报, 2014, 29(4): 443-452. [4] Wang, G.T. (2011) Some Existence Results for Impulsive Nonlinear Fractional Differential Equations with Mixed Boundary Conditions. Computer and Mathematics with Application, 62, 1389-1397. https://doi.org /10.1016/j.camwa.2011.04.004 [5] Tian, Y.S. (2010) Existence Results for the Three-Point Impulsive Boundary Value Problem Involving Fractional Equation. Computer and Mathematics with Application, 59, 2601-2609. https://doi.org /10.1016/j.camwa.2010.01.028 [6] Wang, X.H. (2011) Impulsive Boundary Value Problem for Nonlinear Differential Equations of Fractional Order. Computer and Mathematics with Application, 62, 2383-2391. https://doi.org /10.1016/j.camwa.2011.07.026 [7] 张爱华, 胡卫敏. 非线性分数阶脉冲微分方程边值问题的解[J]. 数学的实践与认识, 2014, 44(6): 233- 240. [8] 智二涛, 刘锡平, 李凡凡. 分数阶脉冲微分方程边值问题正解的存在性[J]. 吉林大学学报(理学版), 2014, 52(3): 482-488. [9] Zhao, K.H. (2014) Positive Solutions for Impulsive Fractional Differential Equations with Generalized Periodic Boundary Value Conditions. Advances in Difference Equations, 1, 255. https://doi.org /10.1186/1687-1847-2014-255