高维线性分拆理论及其应用——Ramsey数R(5,5;2)=47的注记
The Theory of Higher Dimensional Linear Partitions and Its Application—Note on Ramsey Number R(5,5;2)=47
DOI: 10.12677/HANSPrePrints.2017.21034, PDF, 下载: 1,360  浏览: 2,987 
作者: 郭铭浩:上海交通大学生物医学工程学院,上海,中国;郭志成:北方设计研究院,石家庄,中国
关键词: 二元分拆立方体分拆线性分拆广义哥德尔数Binary partitions; solid partitions; linear partitions; general GÖdel numbers
摘要: Euler通过展开一元表达式(1+xα z)(1+xβ z)(1+xγ z)⋯的研究,创立了数的分拆这个数学分支。本文推广表达式到二元形式(1+xa yα z)(1+xb yβ z)(1+xc yγ z)⋯,并建立了相应的二元分拆的递推规则,由此得到了许多有趣的性质,特别是建立了圆周率 π/4的莱布尼茨公式和圆周率 π2/6的欧拉公式与二元分拆函数的联系。二元分拆本质上属于立方体分拆或双二元函数分拆,同时它也是哥德尔数推广到哥德尔数组的一种表达形式。事实上, 二元分拆理论也为求解拉姆塞数R(5,5;2)=47找到了一种新方法。
Abstract: Leonhard Euler established a new mathematical branch: partition, from his study on generating functions: (1+xα z)(1+xβ z)(1+xγ z)⋯. In this work, we propose several new recurrence relations from dual-binary function of solid partitions and General Gödel numbers, based on observations of (1+xa yα z)(1+xb yβ z)(1+xc yγ z)⋯ inspired by Euler’s work. Furthermore connections are derived from this, especially of Leibniz formula for π/4 and Euler formula for π2/6 , from binary pertition formulas. Binary partition is an implementation of cubic partition or dual-binary partitions, which is as well as a expression from Gödel numbers to Gödel numbers array. Actually, we present a new sense to get Ramsey number R(5, 5; 2) = 47 in this paper.
文章引用:郭铭浩, 郭志成. 高维线性分拆理论及其应用——Ramsey数R(5,5;2)=47的注记[J]. 汉斯预印本, 2017, 2(1): 1-42. https://doi.org/10.12677/HANSPrePrints.2017.21034

参考文献

[1] Euler L. Introduction to Analysis of the Infinite[M]. SPRINGER-VERLAG, 1988.
[2] MACMAHON, P. A. Combinatory analysis, vol. 2 (Cambridge, 1916; reprinted Chelsea, New York, 1960).
[3] Atkin, A. O. L., & Bratley, P. (1967). Some computations for, m-dimensional partitions. Mathematical Proceedings of the Cambridge Philosophical Society, 63(4), 1097-1100.
[4] Koch H. Andrews, G. E. The Theory of Partitions. (Encyclopedia of Mathematics and Its Applications) 2. London-Amsterdam-Don Mills-Sydney-Tokyo, Addison-Wesley Publ. Company 1976. XIV, 255 S. $ 16.50[J]. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1979, 59(6):285-285.
[5] Suresh Govindarajan (IIT Madras, & Inde). (2014). Aspects of higher-dimensional partitions.
[6] Destainville, N., & Govindarajan, S. (2015). Estimating the asymptotics of solid partitions. Journal of Statistical Physics, 158(4), 950-967.
[7] Farkas, H. M. (2006). Sums of squares and triangular numbers. Online Journal of Analytic Combinatorics, 1(1).
[8] Amen, J. (2006). Farey sequences, ford circles and pick's theorem.
[9] Ferrara, S., & Fronsdal, C. (2000). CONFORMAL FIELDS IN HIGHER DIMENSIONS. The Ninth Marcel Grossmann Meeting:On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories(In 3 Volumes).
[10] Agustin, M. C. (2008). On sums of figurate numbers by using techniques of poset representation theory. Eprint Arxiv.
[11] MInghao.G,Zhicheng.G,Pure Mathematics Vol.07 No.04(2017), Article ID:21265,7 pag-es 10.12677/PM.2017.74032.
[12] MInghao.G,Zhicheng.G,Pure Mathematics Vol.07 No.04(2017), Article ID:21265,7 pag-es 10.12677/PM.2017.74033.
[13] K. G¨odel. Uber formal unentscheidbare S¨atze der Principia Mathemat ¨ - ica und verwandter Systeme I. Monatshefte f¨ur Mathematik und Physik, 38:173–198, 1931.
[14] K. G¨odel. Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse Math. Kolloq., 4:39–40, 1933. English translation in [4], pages 301–303
[15] Kato K, Kurokawa N, Saito T. Number Theory 2: Introduction to Class Field Theory[M]. 2011.
[16] Stanley, R. P. (2012). Enumerative Combinatorics -- Volume 1. Cambridge University Press.
[17] Lávička, R., O'Farrell, A. G., & Short, I. (2007). Reversible maps in the group of quaternionic möbius transformations. Mathematical Proceedings of the Cambridge Philosophical Society, 143(1), 57-69.
[18] Radziszowski, S. P. (2011). Small ramsey numbers. Electronic Journal of Combinatorics, 1(4), 28.
[19] Pąk, K. (2014). Tietze extension theorem for n-dimensional spaces. Formalized Mathematics, 22(1), 11-19.
[20] Huisgenzimmermann, B. (2014). Fine and coarse moduli spaces in the representation theory of finite dimensional algebras. Macromolecules,29(17), 5539-5545.
[21] 邱懿. (2002). Mobius交错偏序集. 数学年刊(5).
[22] Kumar, P. (2014). Some congruences for balancing and lucas-balancing numbers and their applications. Integers, 14(14).
[23] Cappelli, A., Guida, R., & Magnoli, N. (2001). Exact consequences of the trace anomaly in four dimensions. Nuclear Physics, 618(3), 371-406.
[24] Fahr, P., & Ringerl, C. M. (2008). A partition formula for fibonacci numbers. Journal of Integer Sequences, 11(11), 2-3.
[25] 李文林. (2000). 数学珍宝. 科学出版社.p627-634