PM  >> Vol. 7 No. 6 (November 2017)

    Gol’dberg-Grinshtein型对数导数估计
    Gol’dberg-Grinshtein Type Logarithmic Derivative Estimation

  • 全文下载: PDF(418KB) HTML   XML   PP.454-460   DOI: 10.12677/PM.2017.76059  
  • 下载量: 45  浏览量: 79   科研立项经费支持

作者:  

李 升,陈宝琴:广东海洋大学数学与计算机学院,广东 湛江

关键词:
亚纯函数Nevanlinna理论对数导数Meromorphic Functions Nevanlinna Theory Logarithmic Derivatives

摘要:

通过应用改进的Kolokolniov引理,考虑Gol'dberg-Grinshtein型对数导数估计,将现有结果中的常数改进为4.5206。特别地,对零点和极点都是实数的亚纯函数,将相应的常数改进为3.8018。

By applying the improved Kolokolniov lemma to investigate the Gol’dberg-Grinshtein type logarithmic derivative estimation, the constant in the existing results are improved to 4.5206. In particularly, for the case that all zeros and poles of the meromorphic function are real numbers, the constant is improved to 3.8018.

文章引用:
李升, 陈宝琴. Gol’dberg-Grinshtein型对数导数估计[J]. 理论数学, 2017, 7(6): 454-460. https://doi.org/10.12677/PM.2017.76059

参考文献

[1] [1]Hayman, W. (1964) Meromorphic Functions. Clarendon Press, Oxford.
[2] Laine, I. (1993) Nevanlinna Theory and Complex Differential Equations. W.de Gruyter, Berlin.
https://doi.org/10.1515/9783110863147
[3] 杨乐. 值分布论及其新研究[M]. 北京: 科学出版社, 1982.
[4] Gol’dberg, A. and Grinshtein, V. (1976) The Logarithmic Derivative of a Meromorphic Function. Mathematical Notes of the Academy of Sciences of the Ussr, 19, 320-323.
https://doi.org/10.1007/BF01156790
[5] Benbourenane, D. and Korhonen, R.G. (2002) On the Growth of the Logarithmic Derivative. Computational Methods and Function Theory, 1, 301-310.
https://doi.org/10.1007/BF03320992
[6] Kondratyuk, A.A. and Kshanovskyy, I.P. (2004) On the Logarithmic Derivative of a Meromorphic Function. Matematychni studii, 21, 98-100.
[7] Heittokangas, J., Korhonen, R.G. and Rättyä, J. (2004) Generalized Logarithmic Derivative Estimates of Gol’dberg-Grinshtein Type. Bulletin of the London Mathematical Society, 36, 105-114.
https://doi.org/10.1112/S0024609303002649
[8] Korhonen, R.G. (2006) Sharp Forms of Nevanlinna Error Terms in Differential Equations. Symposium on Complex Differential & Functional Equations, 117-133.
[9] Kolokolnikov, A. (1974) On the Logarithmic Derivative of a Meromorphic Function. Matematicheskie Zametki, 15, 711-718.
https://doi.org/10.1007/BF01152778
[10] Cherry, W. and Ye, Z. (2001) Nevanlinna’s Theory of Value Distribution. The Second Main Theorem and Its Error Terms. Springer-Verlag, Berlin.