HJCE  >> Vol. 6 No. 6 (November 2017)

    单轴对称L型截面高层建筑脉动风压非高斯特性研究
    Study on Non-Gaussian Features of Fluctuating Wind Pressure on L-Shaped Tall Building with Monosymmetric Section

  • 全文下载: PDF(1227KB) HTML   XML   PP.595-605   DOI: 10.12677/HJCE.2017.66071  
  • 下载量: 25  浏览量: 60   国家自然科学基金支持

作者:  

李 毅,王地灵,李永贵:湖南科技大学土木工程学院,湖南 湘潭;
李秋胜:香港城市大学建筑与土木工程系,香港

关键词:
高层建筑风洞试验脉动风压非高斯性High-Rise Building Wind Tunnel Test Wind Pressure Distribution Non-Gaussian Characteristic

摘要:

为了对单轴对称L型截面高层建筑表面幕墙开展合理的抗风安全设计,对缩尺刚性模型开展了同步动态测压风洞试验研究。基于试验结果,绘制了典型风向角下模型各立面脉动风压系数的偏度和峰度分布云图,讨论了脉动风压的非高斯特性;用偏度–峰度检验法对脉动风压系数随机变量进行了正态性检验分析,结合偏度和峰度的相关性分析,给出了此类建筑表面脉动风压的非高斯性区域的判别标准;同时,基于广义极值理论对极值风压系数的概率分布进行了有效拟合。

In order to conduct reasonable wind-resistant design on the curtain walls of L-shaped tall building with monosymmetric section, synchronous pressure wind tunnel test was carried out for a rigid model. Based on the test results, skewness and kurtosis distributions of fluctuating wind pressure coefficients on each elevation under typical wind directions were plotted, and the Non-Gassian features of the fluctuating wind pressure coefficients were discussed. The normality test was conducted for the random variables of the fluctuating wind pressure coefficients by the Skew-ness-Kurtosis test method. Combined with the correlation analysis between skewness and kurtosis, the criterion for Non-Gaussian area of the fluctuating wind pressure coefficients on the surface of this kind building was proposed. Finally, the effective fitting was made for the probability dis-tribution of the extreme wind pressure coefficients in terms of an extreme-value estimation me-thod.

文章引用:
李毅, 王地灵, 李秋胜, 李永贵. 单轴对称L型截面高层建筑脉动风压非高斯特性研究[J]. 土木工程, 2017, 6(6): 595-605. https://doi.org/10.12677/HJCE.2017.66071

参考文献

[1] Tamura, Y. and Kareem, A. (2013) Advanced Structural Wind Engineering. Springer, Japan.
https://doi.org/10.1007/978-4-431-54337-4
[2] 上海市工程建设规范DGJ08-56-2012. 建筑幕墙工程技术规程[S]. 上海:上海市建筑建材业市场管理总站, 2012.
[3] Davenport, A.G. (1961) The Application of Statistical Concepts to the Wind Loading of Structures. ICE Proceedings, 19, 449-472.
https://doi.org/10.1680/iicep.1961.11304
[4] Peterka, J.A. and Cermak, J.E. (1975) Wind Pressures on Build-ings-Probability Densities. Journal of Structural Division. ASCE, 101, 1255-1267.
[5] Kareem, A. and Cermak, J.E. (1984) Pressure Fluctuation on a Square Building Model in Boundary Layer Flows. Journal of Wind Engineering and Industrial Aerodynamics, 16, 17-41.
https://doi.org/10.1016/0167-6105(84)90047-3
[6] Gioffre, M., Gusella, V. and Grigoriu, M. (2001) Non-Gaussian Wind Pressure on Prismatic Buildings. I: Stochastic Field. Journal of Structural Engineering, 127, 981-989.
https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(981)
[7] Gioffre, M., Gusella, V. and Grigoriu, M. (2001) Non-Gaussian Wind Pressure on Prismatic Buildings. II: Numerical Simulation. Journal of Structural Engineering, 127, 990-995.
https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(990)
[8] 韩宁, 顾明. 方形高层建筑风压脉动非高斯特性分析[J]. 同济大学学报(自然科学版), 2012, 40(7): 971-976.
[9] 楼文娟, 李进晓, 沈国辉, 等. 超高层建筑脉动风压的非高斯特性[J]. 浙江大学学报(工学版), 2011, 45(4): 671-677.
[10] Huang, M.F., Lou, W.J., Chan, C.M., et al. (2013) Peak Distributions and Peak Factors of Wind-Induced Pressure Process on Tall Buildings. Journal of Struc-tural Engineering, 139, 1744-1756.
[11] Li, Y. and Li, Q.S. (2016) Across-Wind Dynamic Loads on L-Shaped Tall Buildings. Wind and Structures, 23, 385-403.
https://doi.org/10.12989/was.2016.23.5.385
[12] Li, Y., Li, Q.S. and Chen, F.B. (2017) Wind Tunnel Study of Wind-Induced Torques on L-Shaped Tall Buildings. Journal of Wind Engineering and Industrial Aerodynamics, 167, 41-50.
https://doi.org/10.1016/j.jweia.2017.04.013
[13] 中华人民共和国住房和城乡建设部. 中华人民共和国国家标准GB50009-2012. 建筑结构荷载规范[S]. 北京: 中国建材工业出版社, 2012.
[14] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京: 高等教育出版社, 2010.
[15] Holmes, J.D. (1985) Wind action on Glass and Brown’s Integral. Engineering Structures, 7, 226-230.
https://doi.org/10.1016/0141-0296(85)90001-X
[16] Kareem, A. and Zhao, J. (1994) Analysis of Non-Gaussian Surge Response of Tension Leg Platforms under Wind Loads. Journal of Offshore Mechanics and Arctic Engineering, 116, 137-144.
https://doi.org/10.1115/1.2920142
[17] Sadek, F. and Simiu, E. (2002) Peak Non-Gaussian Wind Effects for Database-Assisted Low-Rise Building Design. Journal of Engineering Mechanics, 128, 530-539.
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(530)
[18] 王飞, 全涌, 顾明. 基于广义极值理论的非高斯风压极值计算方法[J]. 工程力学, 2013, 30(2): 44-49.
[19] Kasperski, M. (2000) Specification and Codification of Design Wind Loads. Ph.D. Thesis, Ruhr University Bochum, Bochum.