AAM  >> Vol. 6 No. 8 (November 2017)

    时滞年龄结构浮游生物模型的平衡点分析
    The Equilibrium of an Age Structured Phytoplankton-Zooplankton Model

  • 全文下载: PDF(437KB) HTML   XML   PP.926-934   DOI: 10.12677/AAM.2017.68111  
  • 下载量: 594  浏览量: 827  

作者:  

孙秀秀:温州大学,浙江省水环境与海洋生物资源保护重点实验室,浙江 温州

关键词:
年龄结构浮游植物–浮游动物平衡点Age-Structured Phytoplankton-Zooplankton Equilibrium

摘要:

本文在一类具有时滞效应和收获效应的浮游植物–浮游动物模型基础上,考虑了浮游动物的年龄结构特征,从而得到了一类具有时滞效应,收获效应和年龄结构的浮游植物和浮游动物模型。文章的主要目的是研究年龄结构对该模型动力学性质的影响。通过模型分析,将其转化成一类抽象的柯西问题。在此基础上,本文主要研究了该模型平衡点的动力学性质,包括存在性和唯一性。

In this paper, we study an age-structured phytoplankton-zooplankton model to describe the dy-namics between the two populations. The model is described by considering age-structured zoop-lankton, time delay and harvesting effect. The aim of this paper is to understand the effect of age structure on this model. Sufficient conditions are obtained for the existence of the equilibrium. It is shown that the equilibrium state of the model is related to the age of zooplankton.

文章引用:
孙秀秀. 时滞年龄结构浮游生物模型的平衡点分析[J]. 应用数学进展, 2017, 6(8): 926-934. https://doi.org/10.12677/AAM.2017.68111

参考文献

[1] Smetacek, V. and Klaas, C. (2012) Deep Carbon Export from a Southern Ocean Iron-Fertilized Diatom Bloom. Nature, 487, 313-319.
https://doi.org/10.1038/nature11229
[2] Martin, M., Scott, C.D. and Hugh, W.D. (2009) Recent Changes in Phytoplankton Communities Associated with Rapid Regional Climate Change along the Western Antarctic Peninsula. Science, 13, 1470-1473.
[3] James, E.C. (1999) The Relative Importance of Light and Nutrient Limitation of Phytoplankton Growth: A Simple Index of Coastal Ecosystem Sensitivity to Nutrient. Aquatic Ecology, 33, 3-16.
https://doi.org/10.1023/A:1009952125558
[4] Qasim, S.Z., Bhattathiri, P.M.A. and Devassy, V.P. (1972) The Influence of Salinity on the Rate of Photosynthesis and Abundance of Some Tropical Phytoplankton. Marine Biology, 12, 200-206.
https://doi.org/10.1007/BF00346767
[5] Siegel, D.A., Doney, S.C. and Yoder, J.A. (2002) The North Atlantic Spring Phytoplankton Bloom and Sverdrup’s Critical Depth Hypotheses. Science, 26, 730-733.
https://doi.org/10.1126/science.1069174
[6] Dominic, M.D., Donald, J.O. and Robert, V.T. (1971) A Dynamic Model of the Phytoplankton Population in the Sacramento-San Joaquin Delta. Advances in Chemistry, 3, 131-180.
[7] Ruan, S.G. (1933) Persistence and Coexistence in Zooplankton-Phytoplankton-Nutrient Models with Instantaneous Nutrient Recycling. Journal of Mathematical Biology, 33, 633-654.
[8] Sarkar, R.R., Mukhopadhyay, B. and Bhattacharyya, R. (2007) Sandip Banerjee Time Lags Can Control Algal Bloom in Two Harmful Phytoplank-ton-Zooplankton Systems. Applied Mathematics and Computation, 186, 445-459.
https://doi.org/10.1016/j.amc.2006.07.113
[9] Maiti, A., Pal, A.K. and Samanta, G.P. (2008) Effect of Time Delay on a Food Chain Model. Applied Mathematics and Computation, 200, 189-203.
https://doi.org/10.1016/j.amc.2007.11.011
[10] Zhao, J.T. and Wei, J.J. (2009) Stability and Bifurcation in a Two Harmful Phytoplankton-Zooplankton System. Chaos, Solitons and Fractals, 39, 1395-1409.
https://doi.org/10.1016/j.chaos.2007.05.019
[11] Dai, C.J., Zhao, M. and Yu, H.G. (2016) Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Diffusion. Ecological Complexity, 17, 29-36.
https://doi.org/10.1016/j.ecocom.2016.03.001
[12] Li, J. (1990) Dynamics of Age Structured Predator-Prey Pop-ulation Models. Journal of Mathematical Analysis and Application, 152, 399-415.
https://doi.org/10.1016/0022-247X(90)90073-O
[13] Cao, B., Huo, H.-F. and Xiang, H. (2017) Global Stability of an Age-Structure Epidemic Model with Imperfect Vaccination and Relapse. Physica A, 486, 638-655.
https://doi.org/10.1016/j.physa.2017.05.056
[14] Yang, J.Y. and Chen, Y.M. (2017) Effect of Infection Age on an SIR Epidemic Model with Demography on Complex Network. Physica A, 23, 527-541.
https://doi.org/10.1016/j.physa.2017.03.006
[15] Liu, Z.H. and Li, N.W. (2015) Stability and Bifurcation in a Predator-Prey Model with Age Structure and Delays. Journal of Nonlinear Science, 25, 937-957.
https://doi.org/10.1007/s00332-015-9245-x
[16] Thieme, H.R. (1990) Integrated Semigroups and Integrated So-lutions to Abstract Cauchy Problems. Journal of Mathematical Analysis and Applications, 152, 416-447.
https://doi.org/10.1016/0022-247X(90)90074-P
[17] Abia, L.M. and Lopez-Marcos, J.C. (1999) On the Numerical Integration of Non-Local Terms for Age-Structured Population Models. Mathematical Biosciences, 157, 147-167.
https://doi.org/10.1016/S0025-5564(98)10080-9