LaAlO3/SrMnO3(111)超晶格中的界面电荷重构
Interface Electronic Reconstruction in LaAlO3/SrMnO3(111) Superlattices
DOI: 10.12677/APP.2017.711040, PDF, HTML, XML, 下载: 1,701  浏览: 4,521  科研立项经费支持
作者: 侯 芳*:苏州科技大学,数理学院,江苏 苏州
关键词: 异质界面极性不连续性电子结构重构半金属双交换机制Heterointerface Polar Discontinuity Electronic Reconstruction Half-Metal Double-Exchange
摘要: 利用第一性原理计算,在LaAlO3/SrMnO3(111)超晶格中实现了由极化电场驱动的电荷转移和半金属性。在(LaO3)/Mn界面处,电子从LaAlO3侧转移到SrMnO33中,占据Mn的eg轨道,从而形成该类超晶格中的半金属铁磁性。而在(SrO3)/La界面处,极化电场使得空穴基本上是均匀分布于SrO3面和LaO3面的氧离子上,于是造成SrMnO3中的G类反铁磁序。不过由于空穴的掺入,此类超晶格是金属性的。
Abstract: Based on extensive first-principle density functional calculations, we have revealed the charge transfer and half-metallic ferromagnetism induced by the polar electronic field in LaAlO3/SrMnO3 (111) superlattices. At the (LaO3)/Mn interface, electrons transfer from LaAlO33 side to SrMnO3 component and occupy eg orbital of Mn ions, inducing half-metallic ferromagnetism of this kind of superlattice. On the other hand, for the superlattices with (SrO3)/La interface, the holes reside almost uniformly at the oxygen atoms of SrO3 and LaO3 atomic planes. With absence of the eg states at the Mn sites, bulk-like G-type AFM ordering were obvious. But this type superlattices are metallic because of hole transfer.
文章引用:侯芳. LaAlO3/SrMnO3(111)超晶格中的界面电荷重构[J]. 应用物理, 2017, 7(11): 320-327. https://doi.org/10.12677/APP.2017.711040

参考文献

[1] Ohtomo, A., et al. (2004) A High-Mobility Electron Gas at LaAlO3/SrTiO3 Heterointerface. Nature, 427, 423.
https://doi.org/10.1038/nature02308
[2] Mannhart, J. and Schlom, D.G. (2010) Oxide Interfaces—An Opportunity for Electronics. Science, 313, 1942-1945.
[3] Narayanapillai, K., et al. (2017) Interfacial Rashba Magnetoresistance of the Two-Dimensional Electron Gas at the LaAlO3/SrTiO3 Interface. Physics Review, 96, Artical ID: 064401.
https://doi.org/10.1103/PhysRevB.96.064401
[4] Diogo, C.V., et al. (2017) Tuning Up or Down the Critical Thickness in LaAlO3/SrTiO3 through In Situ Deposition of Metal Overlayers. Advanced Materials, 29, Artical ID: 1700486.
[5] Nakagawa, N., et al. (2006) Why Some Interfaces Cannot Be Sharp. Nature Materials, 5, 204.
https://doi.org/10.1038/nmat1569
[6] Bell, C., et al. (2009) Thickness Dependence of the Mobility at the LaAlO3/SrTiO3 Interface. Applied Physics Letters, 94, 423.
https://doi.org/10.1063/1.3149695
[7] Thiel, S., et al. (2006) Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures. Science, 313, 1942- 1945.
https://doi.org/10.1126/science.1131091
[8] Herranz, G., et al. (2012) High Mobility Conduction at (110) and (111) LaAlO3/SrTiO3 Interface. Scientific Report, 2, 758.
https://doi.org/10.1038/srep00758
[9] Fang, H., et al. (2012) Half-Metallic Ferromagnetism via the Interface Electronic Reconstruction in LaAlO3/SrMnO3 Nanosheet Superlattices. ACS Nano, 6, 8552.
https://doi.org/10.1021/nn303943t
[10] Blöchl, P.E., et al. (1994) Improved Tetrahedron Method for Brillouin-Zone Integrations. Physical Review B, 49, 16223.
https://doi.org/10.1103/PhysRevB.49.16223
[11] Yang, K.Y., et al. (2011) Possible Interaction-Driven Topological Phases in (111) Bilayers of LaNiO3. Physical Review B, 84, 201104.
https://doi.org/10.1103/PhysRevB.84.201104
[12] Rüegg, A., et al. (2012) Electronic Structure of (LaNiO3)(2)/(LaAlO3)(N) Heterostructures Grown along [111]. Physical Review B, 85, 245131.
https://doi.org/10.1103/PhysRevB.85.245131
[13] Salamon, M.B., et al. (2001) The physics of Manganites: Structure and Transport. Reviews of Modern Physics, 73, 585.
https://doi.org/10.1103/RevModPhys.73.583.
[14] Dagotto, E., et al. (2001) Colossal Magnetoresistant Materials: The Key Role of Phase Separation. Physics Reports, 344, 1-153.
https://doi.org/10.1016/S0370-1573(00)00121-6
[15] Tokura, Y., et al. (2006) Critical Features of Colossal Magnetoresistive Manganites. Reports on Progress in Physics, 69, 797.
https://doi.org/10.1088/0034-4885/69/3/R06
[16] Zener, C.I., et al. (1951) Nteraction between the D-Shells in the Transition Metals. Physical. Review, 82, 403.
https://doi.org/10.1103/PhysRev.82.403
[17] Fang, H., et al. (2011) Magnetic Reconstruction at Oxygen-Deficient SrMnO3 (001) Surface: A First- principle Investigation. Applied Physics Letters, 99, 257.