Cd1–xMxO复合氧化物的制备及抗菌活性
Preparation and Antimicrobial Activity of Cd1–xMxO Composite Oxides
DOI: 10.12677/nat.2011.12009, PDF, HTML, XML, 下载: 3,327  浏览: 10,891  国家自然科学基金支持
作者: 孙檬茜, 梁效锡, 陈耀斌, 李良超*
关键词: CdO掺杂溶胶–凝胶法抗菌活性CdO; Doped; Sol-Gel Method; Antimicrobial Activity
摘要: 用溶胶–凝胶法制备了Cd1–xMxO复合氧化物(M为Cu、Cr,x = 0.02,0.04,0.06,0.08,0.1)。用XRD、SEM表征了样品的物相结构和形貌。结果表明Cd1–xMxO纳米粒子为不规则的六角形貌,晶粒尺寸约为50~80 nm。抗菌测试表明Cd1–xMxO对金黄色葡萄球菌、大肠杆菌、白色念珠菌的抗菌活性明显优于纯的CdO。在掺Cu系列中,Cd0.94Cu0.06O和Cd0.94Cu0.08O样品分别对大肠杆菌和白色念珠菌的抗菌效果最佳;在掺Cr系列样品中,随Cr掺杂浓度增加对金黄色葡萄球菌的抑菌作用增强。
Abstract: Cd1–xMxO composite oxides (M = Cu,Cr; x = 0.02,0.04,0.06,0.08,0.10) were prepared by sol-gel method. The X-ray powder diffraction (XRD) and scanning electron microscope (SEM) were employed to characterize the crystal structure and morphology of the samples. The results indicated that the Cd1–xMxO nanoparticles presented an irregular hexagonal shape and the their size is about 50~80 nm. Antibacterial testing showed that the Cd1–xMxO had excellent antibacterial activity than pure CdO against Staphylococcus aureus, Escherichia coli and Candida albicans. The Cd0.94Cu0.06O and Cd0.94Cu0.08O had the best antibacterial effect on Escherichia coli and Candida albicans in a series of samples doped with Cu, respectively; and the antibacterial activity of samples increased with increase of Cr content in a series of ones doped with Cr.
文章引用:孙檬茜, 梁效锡, 陈耀斌, 李良超. Cd1–xMxO复合氧化物的制备及抗菌活性[J]. 纳米技术, 2011, 1(2): 45-48. http://dx.doi.org/10.12677/nat.2011.12009

参考文献

[1] H. Zhang, X. Y. Ma, Y. J. Ji, et al. Synthesis ofcadmium hydroxide nanoflake and nanowisker by hydrothermal method. Materials Letters, 2005, 59(1): 5625-5658.
[2] M. Ristic, S. Popovic, and S. Music. Formation and properties of Cd(OH)2 and CdO particles. Materials Letters, 2004, 58(20): 2494-2499.
[3] S. Motupally, M. Jain, V. Srinivasan, et al. The role of oxygen at the second discharge plateau of nickel hydroxide. Journal of the Electrochemical Society, 1998, 145(1): 3423-2429.
[4] 李晓娥, 祖庸, 马沛. 溶胶–凝胶法合成纳米二氧化钛中催化剂的研究[J]. 河北化工, 1997, 2: 10-12.
[5] Z. X. Yang, W. Zhong,Y. X. Yin, et al. Controllable synthesis of single-crystalline CdO and Cd(OH)2 nanowires by a simple hydrothermal approach. Nanoscale Research Letters, 2010, 5(6): 961-965.
[6] 邸云萍, 徐利华, 刘明等. 钛精矿湿化学法合成Fe2TiO5/TiO2复合纳米粉[J]. 人工晶体学报, 2008, 37(6): 1365-1369.
[7] 赵俊亮, 李效民, 边继明等. 喷雾热解法生长N掺杂ZnO薄膜机理分析[J]. 无机材料学报, 2005, 20(4): 959-964.
[8] 潘峰, 郭颖, 陈长乐, 文军. 磁控溅射法生长ZnO薄膜的结构和表面形貌特性[J]. 陕西理工学院学报(自然科学版), 2010, 26(4): 58-62.
[9] I. Perelshtein, G. Applerot, N Perkas, et al. CuO-cotton nanocomposite: Formation, morphology, and antibacterial activity. Surface and Coatings Technology, 2009, 204(1-2): 54-57.
[10] 孙爱兰, 谭天伟, 朱中伟. 几种抑菌材料对化妆品中腐败菌的抑制作用比较[J]. 日用化学工业, 2005, 35(2): 84-87.
[11] 张昭, 王向东, 曾光远等. 含银无机抗菌剂的研制和抗菌性能初探[J]. 稀有金属, 2002, 26(5): 401-404.
[12] 郭金玲, 沈岳年. 用Scherrer公式计算晶粒度应注意的几个问题[J]. 内蒙古师范大学学报(自然科学汉文版), 2009, 38(3): 357-358.
[13] 季振国, 吴秋红, 毛启楠. 射频磁控溅射法沉积透明柔性导电CdO薄膜[J]. 半导体技术, 2010, 35(12): 1170-1173.