Evolution of the Universe in Scalar-Tensor Gravity
DOI: 10.12677/MP.2017.76028, PDF, HTML, XML,  被引量 下载: 1,105  浏览: 2,379  国家自然科学基金支持
作者: 张晓菲*:滨州学院,航空工程学院,山东 滨州
关键词: 暗能量模型状态方程Dark Energy Model The Equation of State
摘要: 本文研究的是Scalar-tensor引力理论中暗能量模型在宇宙不同时期的演化行为。我们对这种超出广义相对论框架的暗能量模型的特征进行了推导和分析,并比较了它和广义相对论框架下单标量场暗能量模型的差别。最后,我们在现有观测数据的限制下选取了其中的一类模型进行了数值计算,得到了在广义相对论框架下,普通的单标量场暗能量模型难以得到的物理图像。
Abstract: In this paper, we aim to discuss the evolvement of the dark energy that is assumed to be in the Scalar-tensor gravity. We derive and analyze the characteristics of this kind of dark energy model which exceed the general relativity framework, and compare the difference between the Sca-lar-tensor dark energy models and the general dark energy models. At last, with the current observational constraints, we choose a special model from the Scalar-tensor models to get the nu-merical calculation, and obtain results which is difficult for the general single scalar field model in the general relativity framework.
文章引用:张晓菲. Scalar-Tensor引力下的宇宙演化[J]. 现代物理, 2017, 7(6): 242-248.


[1] Riess, A.G., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. As-tronomical Journal, 116, 1009-1038.
[2] Perlmutter, S. et al. (1999) Measurements of Omega and Lambda from 42 High Redshift Supernovae. Astronomical Journal, 517, 565-586.
[3] Tonry, J.L. et al. (2003) Cosmological Results from High-Z Supernovae. Astronomical Journal, 594, 1-24.
[4] Riess, A.G. et al. (2004) Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astronomical Journal, 607, 665-687.
[5] Clocchiatti, A. et al. (2006) Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications. Astronomical Journal, 642, 1-21.
[6] Feng, B. Wang, X. and Zhang, X. (2005) Dark Energy Constraints from the Cosmic Age and Supernova. Physical Letters B, 607, 35-41.
[7] Zhao, G.B., Xia, J.Q., Li, H., et al. (2007) Probing for Dynamics of Dark Energy and Curvature of Universe with Latest Cosmological Observations. Physical Letters B, 648, 8-13.
[8] Zhang, X. and Wu, F.Q. (2005) Constraints on Holographic Dark Energy from Type Ia supernova Observations. Physical Review D, 72, 043524-043540.
[9] Chang, Z., Wu, F. Q. and Zhang, X. (2006) Constraints on Holographic Dark Energy from X-Ray Gas Mass Fraction of Galaxy Clusters. Physical Review Letters, 633, 14-18.
[10] Di Valentino, E. and Melchiorri, A. (2017) First Cosmological Constraints Combining Planck with the Recent Gravitational-Wave Standard Siren Measurement of the Hubble Constant.
[11] Brans, C. and Dicke, R.H. (1961) Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review, 124, 925-935.
[12] Hrycyna, O. and Szydlowsk, M. (2013) Dynamical Complexity of the Brans-Dicke Cosmology. Journal of Cosmology and Astroparticle Physics, 1312, 16-49.
[13] Emanuele, B., et al. (2015) Testing General Relativity with Present and Future Astrophysical Observations. Classical and Quantum Gravity, 32, 243001-243179.
[14] Li, J.X., Wu, F.Q., Li, Y.C., et al. (2014) Cosmological constraint on Brans-Dicke Model. Research in Astronomy and Astrophysics, 15, 2151-2163.
[15] Avilez, A. and Skordis, C. (2014) Cosmological Constraints on Brans-Dicke Theory. Physical Review Letters, 113, 011101-011105.
[16] Ooba, J., Ichiki, K., Chiba, T., et al. (2017) Cosmological Constraints on Scalar-Tensor Gravity and the Variation of the Gravitational Constant. Progress of Theoretical and Experimental Physics, 4, 043E03-043E18.
[17] Hrycyna, O., Szydlowski, M. and Kamionka, M. (2014) Dynamics and Cosmological Constraints on Brans-Dicke Cosmology. Physical Review D, 90, 124040-124052.
[18] Berti, E., Barausse, E., Cardoso, V. et al. (2015) Testing General Relativity with Present and Future Astrophysical Observations. Classical and Quantum Gravity, 32, 243001-243179.