Al/Bi2O3复合材料反应燃烧特性的数值分析
Numerical Simulation of Combustion Char-acteristics of Nanothermite Al/Bi2O3
DOI: 10.12677/MS.2017.78093, PDF, HTML, XML, 下载: 1,857  浏览: 5,983  科研立项经费支持
作者: 于海洋, 王亚军, 郭 梁:北京理工大学 爆炸科学与技术国家重点实验室,北京
关键词: 纳米铝热剂Al/Bi2O3燃烧特性数值分析Nanothermite Al/Bi2O3 Combustion Characteristics Numerical Simulation
摘要: 为研究Al/Bi2O3纳米铝热剂的燃烧特性,基于固体传热、燃烧波和化学动力学相关理论,建立了一维燃烧波传播模型,采用COMSOL Multiphysics软件,数值分析了Al/Bi2O3化学燃烧反应过程中的燃烧特性。结果表明,Al/Bi2O3在反应过程中经历了点火前升温阶段、燃烧波传播阶段和局部热力学平衡阶段三个燃烧阶段。当Al和Bi2O3的摩尔配比为理论计量比2时,Al/Bi2O3复合物具有最好的燃烧性能,平衡温度可达4217 K,最大反应速率和燃烧波传播速度分别为1.36 × 107 s−1和671.6 m/s。随着反应物粒径和活化能的减小,Al/Bi2O3的平衡温度逐渐减小,最大反应速率和燃烧波传播速度却逐渐增大。而反应点火延迟时间取决于反应物的活化能大小。
Abstract: To study combustion characteristics of nanothermite Al/Bi2O3, a one-dimensional combustion model was established based on solid heat-transfer, combustion theory and chemical kinetics. By using COMSOL Multiphysics, combustion characteristics of nanothermite Al/Bi2O3 were simulated. The results show that there are three steps in the reaction, including heating up before combustion, diffusion of combustion and local thermodynamic equilibrium. The Al/Bi2O3 with stoichiometric ratio (21) has the best combustion characteristics. The highest equilibrium temperature, reaction rate and combustion velocity are 4217 K, 1.36 × 107 s−1 and 671.6 m/s respectively. With the decrease of particle size and activation energy, equilibrium temperature decreased, but the reaction rate and velocity of combustion increased. And the reaction delay time depended on the activation energy.
文章引用:于海洋, 王亚军, 郭梁. Al/Bi2O3复合材料反应燃烧特性的数值分析[J]. 材料科学, 2017, 7(8): 706-715. https://doi.org/10.12677/MS.2017.78093

参考文献

[1] Zhou, X., Shen, R., Ye, Y., et al. (2011) Influence of Al/CuO Reactive Multilayer Films Additives on Exploding Foil Initiator. Journal of Applied Physics, 110, 094505.
https://doi.org/10.1063/1.3658617
[2] Sanders, V.E., Asay, B.W., Foley, T.J., et al. (2007) Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and Al/Bi2O3). Journal of Propulsion and Power, 23, 707-714.
https://doi.org/10.2514/1.26089
[3] Piekiel, N.W., Zhou, L., Sullivan, K.T., et al. (2014) Initiation and Reaction in Al/Bi2O3 Nanothermites: Evidence for the Predominance of Condensed Phase Chemistry. Combustion Science & Technology, 186, 1209-1224.
https://doi.org/10.1080/00102202.2014.908858
[4] Stamatis, D., Ermolinem, A. and Dreizin, E.L. (2012) A Multi-Step Reaction Model for Ignition of Fully-Dense Al-CuO Nanocomposite Powders. Combustion Theory & Mod-elling, 16, 1-18.
https://doi.org/10.1080/13647830.2012.694480
[5] Baijot, V., Glavier, L., Ducere, J., et al. (2015) Modeling the Pressure Generation in Aluminum Based Thermites. Propellants, Explosives, Pyrotechnics, 40, 402-412.
https://doi.org/10.1002/prep.201400297
[6] Shaw, B.D., Pantoya, M.L. and Dikici, B. (2013) Detonation Models of Fast Combustion Waves in Nanoscale Al-MoO3 Bulk Powder Media. Combustion Theory & Modelling, 17, 25-39.
https://doi.org/10.1080/13647830.2012.721898
[7] Martirosyan, K.S., Zyskin, M., Jenkins, C.M., et al. (2014) Fluid Dynamic Modeling of Nano-Thermite Reactions. Journal of Applied Physics, 115, 104903.
https://doi.org/10.1063/1.4867936
[8] 王亚军, 李泽雪, 于海洋, 等. 亚稳态分子间复合物反应机理研究[J]. 化学进展, 2016, 28(11): 1689-1704.
[9] 杜志明, 冯长根, 杜霞, 等. 电热丝点火模型及其临界性[J]. 北京理工大学学报: 自然科学版, 1994(3): 264-268.
[10] 岑可法. 高等燃烧学[M]. 杭州: 浙江大学出版社, 2002.
[11] Kim, K. (2014) Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8, 685-688.
[12] Puszynski, J.A., Bulian, C.J. and Swiatkiewicz J.J. (2007) Processing and Ignition Characteristics of Aluminum-Bismuth Trioxide Nanothermite System. Journal of Propulsion & Power, 23, 698-706.
https://doi.org/10.2514/1.24915
[13] 张向宇. 实用化学手册[M]. 北京: 国防工业出版社, 2011.
[14] Aumann, C.E., Skofronick, G.L. and Martin, J.A. (1995) Oxidation Behavior of Aluminum Nanopowders. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 13, 1178-1183.
https://doi.org/10.1116/1.588232
[15] Puszynski, J.A. (2009) Processing and Characterization of Alumi-num-Based Nanothermites. Journal of Thermal Analysis and Calorimetry, 96, 677-685.
https://doi.org/10.1007/s10973-009-0037-0
[16] Baijot, V., Mehdi, D.R., Rossi, C., et al. (2017) A Multi-Phase Micro-Kinetic Model for Simulating Aluminum Based Thermite Reactions. Combustion & Flame, 180, 10-19.
https://doi.org/10.1016/j.combustflame.2017.02.031
[17] 江自生. 亚稳态分子间复合物Al/Bi2O3的制备及性能研究[D]: [硕士学位论文]. 北京: 北京理工大学, 2016.