HfC陶瓷先驱体的制备及其性能研究
Preparation and Properties of HfC Ceramic Precursor
DOI: 10.12677/MS.2017.78094, PDF, HTML, XML, 下载: 1,842  浏览: 5,677 
作者: 张丽艳, 王小宙, 王亦菲:国防科技大学,航天科学与工程学院新型陶瓷纤维及其复合材料重点实验室,湖南 长沙
关键词: HfC超高温先驱体陶瓷HfC Ultra-High-Temperature Precursor Ceramic
摘要: HfC陶瓷具有优异的耐超高温性能,在航空航天领域具有广阔的应用前景。本文以四氯化铪、乙酰丙酮、甲醇、1,4-丁二醇为原料合成了HfC陶瓷先驱体。采用元素分析、红外光谱、XPS、TG-MS等对先驱体的组成、结构及无机化过程进行了表征。结果表明:先驱体主要含有Hf、C、O、Cl元素,铪与碳以Hf-O-C键的形式相连。在无机化过程中部分碳链断裂,有大量的小分子逸出。另外采用元素分析、XRD、SEM等对陶瓷产物的组成、结构与性能进行了表征。结果表明:Ar气氛下1600℃处理后产物仍存在氧化铪相,真空条件下1200℃碳热还原发生,1600℃热处理后只有碳化铪陶瓷相。
Abstract: As an important ultra-high temperature ceramics (UHTCs), HfC ceramics have been considered to be one of the most promising materials for the application in aerospace. A precursor for HfC ceramic was prepared by using hafnium tetrachloride, methanol, acetylacetone, and 1,4-butanediol as raw materials. The composition, structure and pyrolysis process of the obtained precursor was investigated by elemental analysis, Fourier transform infrared (FTIR), XPS and TG-MS. The results show that, the precursor mainly contains Hf, C, O, Cl, with a linear structure of Hf-O-C. The compo-sition, structure and properties of the pyrolysis products were analyzed by elemental analysis, XRD and SEM. It is found that hafnia still remain in the products after being treated at 1600˚C in argon. In addition, the carbothermal reduction had started at 1200˚C, and only HfC existed after the heat treatment of 1600˚C in vacuum.
文章引用:张丽艳, 王小宙, 王亦菲. HfC陶瓷先驱体的制备及其性能研究[J]. 材料科学, 2017, 7(8): 716-724. https://doi.org/10.12677/MS.2017.78094

参考文献

[1] Kodama, H., Sakamoto, H. and Miyoshi, T. (1989) High-Tech Ceramics View Points and Perspectives. Journal of Materials Science, 72, 551-556.
[2] Isola, C., Appendino, P., Bosco, F., et al. (1998) Protective Glass Coating for Carbon-Carbon Composites. Carbon, 36, 1213-1218.
[3] Cheng, L., Xu, Y., Zhang, L., et al. (2000) Oxidation Be-havior of Three Dimensional C/SiC Composites in Air and Combustion Gas Environments. Carbon, 38, 2103-2108.
[4] Cui, X.M., Nam, Y.S., Lee, J.Y., et al. (2008) Fabrication of Zirconium Carbide (ZrC) Ultra-Thin Fibers by Electrospinning. Materials Letters, 62, 1961-1964.
[5] Preiss, H., Schierhorn, E. and Brzezinka, K.W. (1998) Synthesis of Polymeric Titanium and Zirconium Precursors and Preparation of Carbide Fibres and Films. Journal of Materials Science, 33, 4697-4706.
[6] Buckley, J.D. (1988) Carbon-Carbon: An Overview. Ceramic Bulletin, 67, 364-368.
[7] 张伟刚. 碳/碳复合材料的宽温域自愈合抗氧化[J]. 中国材料进展, 2011, 30(11): 25-31.
[8] 邹武, 张康助, 张立同, 等. 液相先驱体转化法制备TaC抗烧蚀材料[J]. 无机材料学报, 2006(21): 893-898.
[9] Sacks, M.D., Wang, C.A., Yang, Z., et al. (2004) Carbothermal Reduction Synthesis of Nanocrystalline Zirconium Carbide and Hafnium Carbide Powders Using Solution-Derived Precursors. Journal of Materials Science, 39, 6057-6066.
https://doi.org/10.1023/B:JMSC.0000041702.76858.a7
[10] Cai, T., Qiu, W.F., Liu, D., et al. (2013) Synthesis, Characterization, and Microstructure of Hafnium Boride-Based Composite Ceramics via Preceramic Method. Journal of the American Ceramic Society, 96, 1999-2004.
[11] Lu, D., Wang, W., Wang, H., et al. (2016) Synthesis of Ultra-Fine Hafnium Carbide Powders Combining the Methods of Liquid Precursor Conversion and Plasma Activatedsintering. Ceramics International, 42, 8108-8114.
[12] Cheng, J., Wang, J., Wang, X., et al. (2017) Preparation and High-Temperature Performance of HfC-Based Nanocomposites Derived from Precursor with Hf-(O,N) bonds. Ceramics International, 43, 7159-7165.
[13] 严春雷. Cf/ZrC-SiC复合材料PIP制备工艺及其性能研究[D]: [硕士学位论文]. 长沙: 国防科技大学, 材料科学与工程, 2012.
[14] 张育伟, 张金咏, 傅正义. 碳化锆陶瓷的氧化及其对导电性能的影响[J]. 硅酸盐学报, 2013, 41(7): 901-904.