新型核壳Fe@Fe3O4@TiO2纳米链的合成与性能
Synthesis and Properties of Novel Rattle-Type Fe@Fe3O4@TiO2 Nanochains
DOI: 10.12677/MS.2017.78096, PDF, HTML, XML, 下载: 1,749  浏览: 3,568  国家自然科学基金支持
作者: 魏学宾, 李石川, 汤润泽, 周遵宁:北京理工大学机电学院,北京;姚 凯:山东特种工业集团有限公司,山东 淄博
关键词: 核壳结构磁性诱导自组装纳米链柯肯达尔效应吸波性能Rattle-Type Structure MFI Assembly Nanochains Kirkendall Effect Absorption Performance
摘要: 本文采用简单的磁场诱导自组装法制备了核壳Fe@Fe3O4@TiO2纳米链,并通过透射电镜、扫描电镜、X射线衍射、X射线光电子能谱表征其形貌和组成。纳米粒子的粒径在200 nm左右,链长约为2~4 μm。利用振动磁强计研究其磁性能,发现纳米链为铁磁性,饱和磁化强度为30.9 emu/g。采用矢量网络分析仪调查了Fe@Fe3O4@TiO2在1~18 GHz频段的电磁特性结果显示由于多重核壳结构和链状结构的存在,粒子链具有优异的微波吸收性能。
Abstract: Rattle-type Fe@Fe3O4@TiO2 nanochains were synthesized by a facile magnetic-field-induced (MFI) assembly method. The morphology and composition of the as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The diameter of the aligned nanoparticles (NPs) in the magnetic rattle-type chains is about 200 nm, and the length of the nanochain is about 2 - 4 μm. Vibrating sample magnetometer (VSM) measurement reveals that the Fe@Fe3O4@TiO2 nanochains are ferromagnetic with a saturation magnetization of 30.9 emu/g. The electromagnetic characteristics of FeFe3O4@TiO2 nanochains were investigated at 1 - 18 GHz by vector network analyzer. The nanochains show super microwave absorption performance due to the presence of multi-shell structure and chainlike structure.
文章引用:魏学宾, 李石川, 汤润泽, 姚凯, 周遵宁. 新型核壳Fe@Fe3O4@TiO2纳米链的合成与性能[J]. 材料科学, 2017, 7(8): 735-744. https://doi.org/10.12677/MS.2017.78096

参考文献

[1] Hu, Y., He, L. and Yin, Y. (2011) Magnetically Responsive Photonic Nanochains. Angewandte Chemie-International Edition, 50, 3747-3750.
https://doi.org/10.1002/anie.201100290
[2] Wang, H.U.I., Yu, Y., Sun, Y., et al. (2011) Magnetic Nanochains: A Review. Nano, 6, 1-17.
https://doi.org/10.1142/S1793292011002305
[3] Lu, H.B., Liao, L., Li, J.C., et al. (2008) Hematite Nanochain Networks: Simple Synthesis, Magnetic Properties, and Surface Wettability. Applied Physics Letters, 92, 093102.
[4] Klokkenburg, M., Vonk, C., Claesson, E.M., et al. (2004) Direct Imaging of Zero-Field Dipolar Structures in Colloidal Dispersions of Synthetic Magnetite. Journal of the American Chemical Society, 126, 16706-16707.
https://doi.org/10.1021/ja0456252
[5] Niu, H.L., Chen, Q.W., Ning, M., et al. (2004) Synthesis and One-Dimensional Self-Assembly of Acicular Nickel Nanocrystallites under Magnetic Fields. Journal of Physical Chemistry B, 108, 3996-3999.
https://doi.org/10.1021/jp0361172
[6] Wang, M., He, L. and Yin, Y. (2013) Magnetic Field Guided Colloidal Assembly. Materials Today, 16, 110-116.
https://doi.org/10.1016/j.mattod.2013.04.008
[7] Kralj, S. and Makovec, D. (2015) Magnetic Assembly of Su-perparamagnetic Iron Oxide Nanoparticle Clusters into Nano Chains and Nanobundles. ACS Nano, 9, 9700-9707.
https://doi.org/10.1021/acsnano.5b02328
[8] Wang, H., Chen, Q.W., Sun, L.X., et al. (2009) Magnet-ic-Field-Induced Formation of One-Dimensional Magnetite Nanochains. Langmuir, 25, 7135-7139.
https://doi.org/10.1021/la900234n
[9] Guerrero Martinez, A., Perez Juste, J. and Liz Marzan, L.M. (2010) Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. Advanced Materials, 22, 1182-1195.
https://doi.org/10.1002/adma.200901263
[10] Yu, L., Wu, H.B. and Lou, X.W.D. (2017) Self-Templated For-mation of Hollow Structures for Electrochemical Energy Applications. Accounts of Chemical Research, 50, 293-301.
https://doi.org/10.1021/acs.accounts.6b00480
[11] Liu, J., Xu, J., Che, R., et al. (2013) Hierarchical Fe3O4@TiO2 Yolk-Shell Microspheres with Enhanced Microwave-Absorption Properties. Chemistry-A European Journal, 19, 6746-6752.
https://doi.org/10.1002/chem.201203557
[12] Wu, Z.C., Li, W.P., Luo, C.H., et al. (2015) Photothermal Ablation: Rattle-Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Advanced Functional Materials, 25, 6527-6537.
https://doi.org/10.1002/adfm.201503015
[13] Niu, Z., Becknell, N., Yu, Y., et al. (2016) Anisotropic Phase Segregation and Migration of Pt in Nanocrystals En Route to Nanoframe Catalysts. Nature Maters, 15, 1188-1194.
https://doi.org/10.1038/nmat4724
[14] Ge, J., Hu, Y., Zhang, T., et al. (2007) Superparamagnetic Composite Colloids with Anisotropic Structures. Journal of the American Chemical Society, 129, 8974-8975.
https://doi.org/10.1021/ja0736461
[15] Yin, Y.Y., Zhou, S.X., Min, C., et al. (2011) Preparation of Rattle-Type Magnetic Mesoporous Carbon Spheres and Their Highly Efficient Adsorption and Separation. Journal of Colloid and Interface Science, 361, 527-533.
https://doi.org/10.1016/j.jcis.2011.05.014
[16] Kalantari, M., Yu, M., Noonan, O., et al. (2017) Rattle-Type Magnetic Mesoporous Hollow Carbon as a High-Performance and Reusable Adsorbent For Water Treatment. Chemo-sphere, 166, 109-117.
https://doi.org/10.1016/j.chemosphere.2016.09.083
[17] Zhao, W., Chen, H., Li, Y., et al. (2008) Uniform Rat-tle-Type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and Their Sustained-Release Property. Ad-vanced Functional Materials, 18, 2780-2788.
https://doi.org/10.1002/adfm.200701317
[18] Liang, C., Li, Z. and Dai, S. (2008) Mesoporous Carbon Materials: Synthesis and modification. Angewandte Chemie-International Edition, 47, 3696-3717.
https://doi.org/10.1002/anie.200702046
[19] Jin, Z., Wen, Y., Hu, Y., et al. (2017) MRI-Guided and Ultra-sound-Triggered Release of NO by Advanced Nanomedicine. Nanoscale, 9, 3637-3645.
https://doi.org/10.1039/C7NR00231A
[20] Yin, Y., Rioux, R.M., Erdonmez, C.K., et al. (2004) Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Science, 304, 711-714.
https://doi.org/10.1126/science.1096566
[21] Li, S., Zhou, Z., Zhang, T., et al. (2014) Synthesis and Characteri-zation of Ag/Fe3O4 Electromagnetic Shielding Particles. Journal of Magnetism and Magnetic Materials, 358, 27-31.
https://doi.org/10.1016/j.jmmm.2014.01.026
[22] Thess, A., Lee, R., Nikolaev, P., et al. (1996) Crystalline Ropes of Metallic Carbon Nanotubes. Science, 273, 483-487.
https://doi.org/10.1126/science.273.5274.483
[23] Luo, P., Nieh, T.G., Schwartz, A.J., et al. (1995) Surface Characterization of Nanostructured Metal and Ceramic Particles. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 204, 59-64.
https://doi.org/10.1016/0921-5093(95)09938-7
[24] Huang, J., Chen, W., Zhao, W., et al. (2009) One-Dimensional Chainlike Arrays of Fe3O4 Hollow Nanospheres Synthesized by Aging Iron Nanoparticles in Aqueous Solution. Journal of Physical Chemistry C, 113, 12067-12071.
https://doi.org/10.1021/jp810662j
[25] Vargas, E., Melo, W.W.M., Allende, S., et al. (2015) Dipolar-Driven Formation of Cobalt Nanoparticle Chains in Polyethylene Films. Materials Chemistry and Physics, 162, 229-233.
https://doi.org/10.1016/j.matchemphys.2015.05.062
[26] Ilg, P. (2008) Importance of Depletion Interactions for Structure and Dynamics of Ferrofluids. The European Physical Journal E, 26, 169-176.
https://doi.org/10.1140/epje/i2007-10248-6
[27] Abbas, M., Rao, B.P., Reddy, V., et al. (2014) Fe3O4/TiO2 Core/Shell Nanocubes: Single-Batch Surfactantless Synthesis, Characterization and Efficient Catalysts for Methylene Blue Degradation. Ceramics International, 40, 11177-11186.
https://doi.org/10.1016/j.ceramint.2014.03.148
[28] Yu, X., Liu, S. and Yu, J. (2011) Superparamagnetic γ-Fe2O3@SiO2@TiO2 Composite Microspheres with Superior Photocatalytic Properties. Applied Catalysis B: Envi-ronmental, 104, 12-20.
https://doi.org/10.1016/j.apcatb.2011.03.008
[29] Monshi, A., Foroughi, M.R. and Monshi, M.R. (2012) Modi-fied Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science & Engineering, 2, 154-160.
https://doi.org/10.4236/wjnse.2012.23020
[30] Wang, T., Liu, Z., Lu, M., et al. (2013) Graphene-Fe3O4 Nano-hybrids: Synthesis and Excellent Electromagnetic Absorption Properties. Journal of Applied Physics, 113, Article ID: 024314.
https://doi.org/10.1063/1.4774243
[31] Klaus, S., Trotochaud, L., Cheng, M.J., et al. (2016) Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media. ChemElectroChem, 3, 66-73.
https://doi.org/10.1002/celc.201500364
[32] Yang, H.G. and Zeng, H.C. (2012) Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. Journal of Physical Chemistry B. Condensed Matter Materials Surfaces In-terfaces & Biophysical, 108, 3492-3495.
[33] Hu, H., Wang, Z., Pan, L., et al. (2010) Ag-Coated Fe3O4@SiO2 Three-Ply Composite Microspheres: Synthesis, Characterization, and Application in Detecting Melamine with Their Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 114, 7738-7742.
https://doi.org/10.1021/jp100141c
[34] Qian, G., Chen, F., Zhang, J., et al. (2009) The Study of Novel Fe3O4@γ-Fe2O3 Core/Shell Nanomaterials with Improved Properties. Journal of Magnetism & Magnetic Materials, 321, 1052-1057.
https://doi.org/10.1016/j.jmmm.2008.10.022
[35] Venkatesan, M., Nawka, S., Pillai, S.C., et al. (2003) Enhanced Magnetoresistance in Nanocrystalline Magnetite. Journal of Applied Physics, 93, 8023-8025.
https://doi.org/10.1063/1.1555371
[36] Hu, F.Q., Wei, L., Zhou, Z., et al. (2006) Preparation of Biocompatible Magnetite Nanocrystals for in Vivo Magnetic Resonance Detection of Cancer. Advanced Materials, 18, 2553-2556.
https://doi.org/10.1002/adma.200600385
[37] Goya, G.F., Berquo, T.S., Fonseca, F.C., et al. (2003) Static and Dynamic Magnetic Properties of Spherical Magnetite Nanoparticles. Journal of Applied Physics, 94, 3520-3528.
https://doi.org/10.1063/1.1599959
[38] Kim, E.H., Lee, H.S., Kwak, K.B., et al. (2005) Synthesis of Ferrofluid with Magnetic Nanoparticles by soNochemical Method for MRI Contrast Agent. Journal of Magnetism and Magnetic Materials, 289, 328-330.
https://doi.org/10.1016/j.jmmm.2004.11.093
[39] Zhu, Y., Zhao, W., Chen, H., et al. (2007) A Simple One-Pot Self-Assembly Route to Nanoporous and Monodispersed Fe3O4 Particles with Oriented Attachment Structure and Magnetic Property. Journal of Physical Chemistry C, 111, 5281-5285.
https://doi.org/10.1021/jp0676843
[40] Chen, Y.J., Zhang, F., Zhao, G.G., et al. (2010) Synthesis, Mul-ti-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods. Journal of Physical Chemistry C, 114, 9239-9244.
https://doi.org/10.1021/jp912178q
[41] Wen, S., Liu, Y., Zhao, X., et al. (2014) Synthesis, Multi-Nonlinear Dielectric Resonance and Electromagnetic Absorption Properties of hcp-Cobalt Particles. Journal of Magnetism and Magnetic Materials, 354, 7-11.
https://doi.org/10.1016/j.jmmm.2013.10.030
[42] Du, Y., Liu, W., Qiang, R., et al. (2014) Shell Thick-ness-Dependent Microwave Absorption of Core-Shell Fe3O4@C Composites. ACS Applied Materials & Interfaces, 6, 12997-13006.
https://doi.org/10.1021/am502910d
[43] Wu, M.Z., Zhang, Y.D., Hui, S., et al. (2002) Microwave Magnetic Properties of Co50/(SiO2)50 Nanoparticles. Applied Physics Letters, 80, 4404-4406.
https://doi.org/10.1063/1.1484248
[44] Zhu, C.L., Zhang, M.L., Qiao, Y.J., et al. (2010) Fe3O4/TiO2 Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics. Journal of Physical Chem-istry C, 114, 16229-16235.
https://doi.org/10.1021/jp104445m