APP  >> Vol. 7 No. 11 (November 2017)

    高斯表面在互连线参数提取中的应用
    Application of Gaussian Surface to the Parameter Extraction of Interconnection Line

  • 全文下载: PDF(378KB) HTML   XML   PP.344-350   DOI: 10.12677/APP.2017.711042  
  • 下载量: 455  浏览量: 1,040  

作者:  

陈宝君,鞠艳杰:大连交通大学,电气信息学院,辽宁 大连

关键词:
高斯函数互连线参数提取Gaussian Function Interconnection Line Parameter Extraction

摘要:

随着集成电路特征尺寸的进一步缩小,互连线RC延迟引起的可靠性问题正成为影响芯片性能的主要因素。受制作工艺影响,互连线截面并非规则矩形,而RC延迟问题会因此加剧,采用数值方法分析、计算这种互连线的寄生参数必须首先描述粗糙表面。集成电路中互连线的表面高度并不容易测量,为此,本文提出了使用高斯函数来描述粗糙表面,实验数据表明将该表面应用于互连线参数计算结果较为准确。

With the further shrinkage of the feature size of integrated circuit, the reliability problem arising from RC delay of interconnection line becomes the main factor affecting the performance of chip. Affected by the manufacturing technology, the cross section of interconnection line is not regular rectangle, and RC delay is thus intensified. The analysis and computation of the parasitic parameter of such interconnection line using numerical method must firstly describe the rough surface. The surface height of interconnection line in the integrated circuit is not easy to measure. To this end, the paper proposes using Gaussian function to describe the rough surface. The experimental data indicate that the application of such surface to the parameters of interconnection line realizes accurate computation result.

文章引用:
陈宝君, 鞠艳杰. 高斯表面在互连线参数提取中的应用[J]. 应用物理, 2017, 7(11): 344-350. https://doi.org/10.12677/APP.2017.711042

参考文献

[1] Morgan, S.P. and Samuel, P. (1949) Effect of Surface Roughness on Eddy Current Losses at Microwave Frequencies. Applied Physics, 20, 352-362.
https://doi.org/10.1063/1.1698368
[2] Wu, Z. and Davis, L.E. (1994) Surface Roughness Effect on Surface of Impedance of Superconductors. Journal of Applied Physics, 76, 3669-3672.
https://doi.org/10.1063/1.357430
[3] Biot, M.A. (1957) Some New Aspects of the Reflection of Electromagnetic Waves on a Rough Surface. Journal of Applied Physics, 28, 1455-1463.
https://doi.org/10.1063/1.1722676
[4] Wait, J.R. (1959) Guiding of Electromagnetic Waves by Uniformly Rough Surface-Part 1. Antennas and Propagation, 7, 154-162.
https://doi.org/10.1109/TAP.1959.1144764
[5] Zhu, Z.H., Demir, A. and White, J.B. (2004) A Stochastic Integral Equation Method for Modeling the Rough Surface Effect On Interconnect Capacitance. Computer Aided Design, 887-891.
[6] Wilton, D., Rao, S. and Glisson, A. (1984) Potential Integrals for Uniform and Linear Source Distributions on Polygonal and Polyhedral Domains. IEEE Transactions on Antennas and Propagation, 32, 276-281.
https://doi.org/10.1109/TAP.1984.1143304
[7] Gralia, R.D. (1993) On the Numerical Integration of the Linear Shape Functions Times the 3-D Greens Function or Its Gradient on a Place Triangle. IEEE Transactions on Antennas and Propagation, 41, 1448-1455.
https://doi.org/10.1109/8.247786
[8] 盛新庆. 计算电磁学要论[M]. 北京: 科学出版社, 2004.
[9] Duffy, M.G. (1982) Quadrature over a Pyramid or Cube of Integrands with a Singularity at a Vertex. SIAM Journal on Numerical Analysis, 19, 1260-1262.
https://doi.org/10.1137/0719090
[10] 王浩刚, 聂在平. 三维矢量散射积分方程中奇异性分析[J]. 电子学报, 1999, 27(12): 68-71.
[11] Geoffrey, R.G. and David, R.S. (2001) Probability and Random Processes. Oxford University Press, Oxford.
[12] Tsang, L., Kong, J.A. (2001) Electromagnetic Waves: Numerical Simulations. John Wiley and Sins, New York.
https://doi.org/10.1002/0471224308
[13] Chen, Q. and Wong, N. (2008) Efficient Numerical Modeling of Random Rough Surface Effects for Interconnect Internal Impedance Extraction. Design Automation Conference.