氟碳涂层耐老化性能研究
Failure Behaviors of Fluorocarbon Coatings
DOI: 10.12677/HJCET.2017.76037, PDF, HTML, XML, 下载: 1,446  浏览: 3,794 
作者: 张寒露, 曹京宜, 李 亮:海军涂料分析检测中心,北京
关键词: 氟碳涂层氙灯老化户外曝晒Fluorocarbon Coating Xenon Lamp Aging Experiments Outdoor Exposure Experiments
摘要: 利用IR、SEM、EIS等分析手段研究氟碳涂层在氙灯老化试验和三亚户外曝晒试验条件下的老化失效行为。结果表明:氟碳涂层在氙灯老化试验和三亚户外曝晒试验失效过程中,具有相似的涂层表面形貌,一致的老化失效机制。相对于三亚户外曝晒试验,氙灯老化试验具有明显的加速作用。
Abstract: The aging failure rule and behavior of the fluorocarbon coatings in Sanya outdoor exposure experiments and xenon lamp aging experiments were investigated by infrared spectrum, scanning electron microscope and EIS. The results indicated that the fluorocarbon coatings in xenon lamp aging and Sanya outdoor exposure experiments failure process are with a similar coating surface morphology, and a consistent aging failure mechanism. Relative to Sanya outdoor exposure experiments, Xenon lamp aging experiments have obvious effect.
文章引用:张寒露, 曹京宜, 李亮. 氟碳涂层耐老化性能研究[J]. 化学工程与技术, 2017, 7(6): 263-267. https://doi.org/10.12677/HJCET.2017.76037

参考文献

[1] 闫海鹏, 张卫卫, 毛宏. 我国舰船涂料使用情况分析与建议[J]. 海军装备维修, 2015(6): 22-23.
[2] Guermazi, N., Haddar, N., Elleuch, K., et al. (2010) On the Peel Behavior of Polymer Coating-Steel System: Effect of Hygrothermal Aging. Advances in Polymer Technology, 29, 185-196.
https://doi.org/10.1002/adv.20188
[3] Irigoyen, M., Bartolomeo, P., Perrin, F.X., et al. (2001) UV Ageing Characterisation of Organic Anticorrosion Coatings by Dynamic Mechanical Analysis, Vickers Microhardness, and Infra-Red Analysis. Polymer Degradation & Stability, 74, 59-67.
https://doi.org/10.1016/S0141-3910(01)00099-4
[4] Corvo, F., Perez, B.T., Dzib, B.L., et al. (2008) Out-door-Indoor Corrosion of Metals in Tropical Coastal Atmospheres. Corrosion Science, 50, 220-230.
https://doi.org/10.1016/j.corsci.2007.06.011
[5] Lfe, J. (2000) Accelerated and Outdoor/Natural Exposure Testing of Coatings. Progress in Polymer Science, 25, 1337-1362.
https://doi.org/10.1016/S0079-6700(00)00030-7
[6] 张寒露, 曹京宜, 李亮, 顿玉超, 左禹. 聚氨酯涂层在三亚室外自然曝晒与氙灯老化腐蚀环境中的失效行为[J]. 装备环境工程, 2016, 13(4): 58-62.
[7] Wang, J.-J., Dong, S.-G., Ye, M.-Q., et al. (2006) Correlation between Outdoor-Exposure and Indoor-Accelerated Ageing Test for Epoxy Coating. Surface Technology, 35, 36-39.
[8] Yanga, X., Vangb, C., Tallmana, D., et al. (2001) Weathering Degradation of a Polyurethane Coating. Polymer Degradation and Stability, 74, 341-351.
https://doi.org/10.1016/S0141-3910(01)00166-5
[9] Franciscoc, A.R. (1999) Outdoor and Indoor Atmospheric Corrosion of Carbon Steel. Corrosion Science, 41, 75-89.
https://doi.org/10.1016/S0010-938X(98)00081-X
[10] 潘家亮, 王佰森, 张拴勤, 等. 涂层光泽度影响因素理论分析研究[J]. 现代涂料与涂装, 2011, 14(12): 31-33.
[11] 张寒露, 曹京宜, 李亮. 电化学方法研究环氧防锈涂料实验室实验和实海环境实验的相关性[J]. 中国涂料, 2016, 31(1): 46-50.
[12] 叶美琪, 金晓鸿, 陈乃红, 等. 船舶涂料海洋环境与试验室加速试验相关性研究——海洋大气区用涂料体系[J]. 装备环境工程, 2011, 8(2): 4-11.
[13] Chiavari, C., Bernardi, E., Martini, C., et al. (2012) Atmospheric Corrosion of Cor-Ten Steel with Different Surface Finish: Accelerated Ageing and Metal Release. Materials Chemistry and Physics, 136, 477-486.
https://doi.org/10.1016/j.matchemphys.2012.07.014
[14] Wang, B.B., Wang, Z.Y., Han, W., et al. (2012) Atmospheric Corrosion of Aluminium Alloy 2024-T3 Exposed to Salt Lake Environment in Western China. Corrosion Science, 59, 63-70.
https://doi.org/10.1016/j.corsci.2012.02.015
[15] Jacques, L.F.E. (2000) Accelerated and Outdoor/Natural Exposure Testing of Coatings. Progress in Polymer Science, 25, 1337-1362.
https://doi.org/10.1016/S0079-6700(00)00030-7
[16] Brunner, S., Richner, P., Müller, U., et al. (2005) Accelerated Weathering Device for Service Life Prediction for Organic Coatings. Polymer Testing, 24, 25-31.
https://doi.org/10.1016/j.polymertesting.2004.08.001