氟硼荧类阴离子探针的实验教学应用研究
Application of a BODIPY-Based Fluorescent Anions Sensor for Experimental Teaching
DOI: 10.12677/AAC.2017.74033, PDF, HTML, XML, 下载: 1,651  浏览: 3,105  科研立项经费支持
作者: 段亚华, 张兆鑫, 白娜娜, 王伟星, 李 欠:甘肃农业大学农学院,中草药栽培与鉴定系/中药材研究所,植物生产类国家实验教学示范中心, 甘肃 兰州
关键词: 荧光探针阴离子识别紫外–可见吸收光谱荧光发射光谱Fluorescent Sensor Anion Recognition UV-Visible Absorption Spectroscopy Fluorescent Emission Spectroscopy
摘要: 设计合成了含有酚羟基的氟硼荧类荧光探针分子1,利用紫外–可见吸收光谱和荧光发射光谱研究了探针分子1的阴离子识别和光化学传感性能。研究结果表明,该探针分子可以通过紫外–可见吸收光谱和荧光发射光谱双通道识别检测氟离子。该探针分子是一类“开–关”型阴离子荧光探针,作用方式为探针分子酚羟基与阴离子之间的氢键作用。通过本实验不但可以让学生掌握紫外–可见吸收光谱和荧光发射光谱仪的使用方法,还能培养学生在分子识别与光化学传感领域的科研兴趣,为进一步的科研工作打下基础。
Abstract: A BODIPY-based fluorescent sensor 1 has been developed and their recognition and sensing abili-ties with various anions have been studied in solution by absorption and emission spectroscopy. Sensor 1 showed selective response toward fluoride anions through hydrogen bonding interaction with ON-OFF fluorescent behaviors. Through this experiment, it allows students not only mastering how to operate the UV-visible absorption and fluorescence emission spectrophotometers, but also cultivating the research interest in the field of molecular recognition and photochemical sensing.
文章引用:段亚华, 张兆鑫, 白娜娜, 王伟星, 李欠. 氟硼荧类阴离子探针的实验教学应用研究[J]. 分析化学进展, 2017, 7(4): 249-256. https://doi.org/10.12677/AAC.2017.74033

参考文献

[1] Lehn, J.M. 超分子化学–概念和展望[M]. 沈兴海, 译. 北京: 北京大学出版社, 2002.
[2] 刘育, 尤长城, 张衡益. 超分子化学–合成受体的分子识别与组装[M]. 天津: 南开大学出版社, 2001.
[3] Steed, J.W., Atwood, H.L. 超分子化学[M]. 赵耀鹏, 孙震, 译. 北京: 化学工业出版社, 2006.
[4] Martinez-Manez, R. and Sancenon, F. (2003) Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103, 4419-4476.
https://doi.org/10.1021/cr010421e
[5] Zhou, Y., Xu, Z. and Yoon, J. (2011) Fluorescent and Colorimetric Chemosensors for Detection of Nucleotides, FAD and NADH: Highlighted Research during 2004-2010. Chemical So-ciety Reviews, 40, 2222-2235.
https://doi.org/10.1039/c0cs00169d
[6] Gale, P.A. (2010) Anion receptor Chemistry: Highlights from 2008 and 2009. Chemical Society Reviews, 39, 3746-3771.
https://doi.org/10.1039/c001871f
[7] Caltagirone, C. and Gale, P.A. (2009) Anion Receptor Chemistry, Highlights from 2007. Chemical Society Reviews, 38, 520-563.
https://doi.org/10.1039/B806422A
[8] Gale, P.A., Garcia-Garrido, S.E. and Garric, J. (2008) Anion Receptors Based on Organic Frameworks: Highlights from 2005 and 2006. Chemical Society Reviews, 37, 151-190.
https://doi.org/10.1039/B715825D
[9] Moragues, M., Martinez-Manez, R. and Sancenon, F. (2011) Chromo-genic and Fluorogenic Chemosensors and Reagents for Anions. A Comprehensive Review of the Year 2009. Chemical Society Reviews, 40, 2593-2643.
https://doi.org/10.1039/c0cs00015a
[10] Boens, N., Leen, V. and Dehaen, W. (2012) Fluorescent Indicators Based on Bodipy. Chemical Society Reviews, 41, 1130-1172.
https://doi.org/10.1039/C1CS15132K
[11] Ulrich, G., Ziessel, R. and Harriman, A. (2008) The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47, 1184-1201.
https://doi.org/10.1002/anie.200702070
[12] Loudet, A. and Burgess, K. (2007) BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107, 4891-4932.
https://doi.org/10.1021/cr078381n
[13] Li, Q., Xu J., Yue, Y., Liao, Y. and Shao, S.J. (2014) A BODIPY Based Indicator for Fluorogenic Detection of Salicylaldehyde with Off-On Emission. Analytical Methods, 6, 6531-6535.
https://doi.org/10.1039/C4AY01011F
[14] Gabe, Y., Urano, Y., Kikuchi, K., Kojima, H. and Nagano, T. (2004) Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dipyrromethene Chro-mophore—Rational Design of Potentially Useful Bioimaging Fluorescence Probe. Journal of the American Chemical Society, 126, 3357-3367.
https://doi.org/10.1021/ja037944j
[15] Benesi, H.A. and Hildebrand, J.H. (1949) A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. Journal of the American Chemical Society, 71, 2703-2707.
https://doi.org/10.1021/ja01176a030