湿度权重方法在西南涡强降水过程的应用研究
Application of Relative Humidity-Based Weighting Approach in Regional Heavy Precipitation Process of Southwest Vortex
摘要: 利用欧洲中心ERA-Interim数据分析研究一次西南涡东移导致长江中下游强降水事件,首先,利用湿度权重的方法构造出两个新的动力学诊断量:湿权重风暴相对螺旋度(mSRH)和湿权重螺旋度散度(mMHD)。mSRH可以更好的指示强降水的范围,但是最大强度中心相对降水中心偏北。然后随着西南涡东移的发展,mMHD很好指示的降水中心位置,mSRH和mMHD的中心和降水中心相对一致。其次,将反映热带气旋的生成源地的Okubo-Weiss (OW)参数引入西南涡,描述其位置和移动方向。经过湿度修饰后的mOW参数,mOW最大正值中心很好的指示西南涡的中心位置,西南涡位置中心前部存在一个mOW强大的负值区域,对应着西南涡未来6 h时刻的移动位置。
Abstract: Basing on the dataset of European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), a regional heavy precipitation event that occurred over the Yangtze River region on 18-20 July 2016 is analyzed with a southwest storm moving eastward. The relative humidity-based weighting approach used to extend the Storm relative helicity (SRH) to moist storm relative helicity (mSRH) is analyzed and demonstrates such an improvement. Following the same approach, there are two new diagnostic parameters mositure weighting helicity divergence (mMHD) and moist Okubo-Weiss parameter (mOW). Results show that MSRH can better indicate the range of heavy precipitation, but the maximum intensity center is relative to the north of precipitation center. Then, along with the development of the southwest vortex, the center of precipitation is well indicated by mMHD, and the center of mSRH and mMHD are relatively consistent with the precipitation center. Then, the largest positive center of mOW is a good indicator to indict the center of southwest vortex; there is a strong negative center of mOW in east of southwest votex indicating its future 6 hour’s moving direction.
文章引用:张智. 湿度权重方法在西南涡强降水过程的应用研究[J]. 气候变化研究快报, 2017, 6(5): 340-351. https://doi.org/10.12677/CCRL.2017.65036

参考文献

[1] 高守亭. 流场配置及地形对西南低涡形成的动力作用[J]. 大气科学, 1987, 11(3): 263-271.
[2] 卢敬华. 西南低涡概论[M]. 北京: 气象出版社, 1986: 270 p.
[3] Kuo, Y.H., Cheng, L.S. and Bao, J.W. (1988) Numerical Simulation of the 1981 Sichuan Flood. Part I: Evolution of a Mesoscale Southwest Vortex. Monthly Weather Review, 116, 2481-2504.
https://doi.org/10.1175/1520-0493(1988)116<2481:NSOTSF>2.0.CO;2
[4] 陈启智, 黄奕武, 王其伟, 谈哲敏. 1990-2004年西南低涡活动的统计研究[J]. 南京大学学报: 自然科学版, 2007, 43(6), 633-642.
[5] 伍荣生. 大气动力学. 第1版[M]. 北京: 气象出版社, 1990: 96-101.
[6] Tang, Z.M. and Wu, R.S. (1994) Helicity Dynamics of Atmospheric Flow. Advance in Atmospheric Sciences, 11, 175-188.
[7] 杨越奎, 刘玉玲, 万振栓, 等. 91. 7梅雨锋暴雨的螺旋度分析[J]. 气象学报, 1994, 52(3): 379-384.
[8] 吴宝俊, 许晨海, 刘延英. 螺旋度在分析一次三峡大暴雨中的应用[J]. 应用气象报, 1996, 7(1): 108-112.
[9] 侯瑞钦, 程麟生, 冯伍虎. 98. 7特大暴雨低涡的螺旋度和动能诊断分析[J]. 高原气象, 2003, 22(2): 202-208.
[10] 王颖, 寿绍文, 周军. 水汽螺旋度及其在一次江淮暴雨分析中的应用[J]. 南京气象学院学报, 2007, 30(1): 101-106.
[11] Chen, Y.R., Li, Y.Q. and Zhao, T.L. (2015) Cause Analysis on Eastward Movement of Southwest China Vortex and Its Induced Heavy Rainfall in South China. Advanced Materials, 1, 1-22.
https://doi.org/10.1155/2015/481735
[12] 方从羲, 李子良. 一次西南涡致洪暴雨天气过程诊断分析和数值模拟试验[J/OL]. 中国海洋大学学报(自然科学版), 2016, 46(5): 14-21.
http://kns.cnki.net/kcms/detail/37.1414.p.20160421.0949.007.html
[13] Ran, L.K., Li, N. and Gao, S.T. (2013) PV-Based Diagnostic Quantities of Heavy Precipitation: Solenoidal Vorticity and Potential Solenoidal Vorticity. Journal of Geophysical Research, 118, 5710-5723.
https://doi.org/10.1002/jgrd.50294
[14] Gao, S.T., Wang, X.R. and Zhou, Y.S. (2004) Generation of Generalized Moist Potential Vorticity in a Frictionless and Moist Adiabatic Flow. Geophysical Research Letters, 31, L12113.
[15] Qian, W.H., Du, J., Shan, X.L. and Jiang, N. (2015) Incorporating the Effects of Moisture into a Dynamical Parameter: Moist Vorticity and Moist Divergence. Weather and Forecasting, 30, 1411-1428.
https://doi.org/10.1175/WAF-D-14-00154.1
[16] Djebou, D.C.S., Singh, V.P. and Frauenfeld, O.W. (2014) Analysis of Watershed Topography Effects on Summer Precipitation Variability in the Southwestern United States. Journal of Hydrology, 511, 838-849.
https://doi.org/10.1016/j.jhydrol.2014.02.045
[17] Montgomery, M.T., Davis, C., Dunkerton, T., Wang, Z., Velden, C., Torn, R., Majumdar, S.J., Zhang, F., Smith, R.K., Bosart, L., Bell, M.M., Haase, J.S., Heymsfield, A., Jensen, J., Campos, T. and Boothe, M.A. (2012) The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) Experiment. Scientific Basis, New Analysis Tools and Some First Results, B. American Meteorological Society, 93, 153-172.
https://doi.org/10.1175/BAMS-D-11-00046.1
[18] 管靓, 周顺武, 葛旭阳, 王梅红. “育婴袋”假说在西北太平洋台风生成地点的应用研究[J/OL]. 热带气象学报, 2016, 32(4): 494-502.
http://kns.cnki.net/kcms/detail/44.1326.p.20160921.0926.007.html
[19] Davies-Jones, R. (1984) Streamwise Vorticity: The Origin of Updraft Rotation in Supercell Storms. Journal of the Atmospheric Sciences, 41, 2991-3006.
https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2
[20] Thompson, R.L., Mead, C.M. and Roger, E. (2007) Effective Storm-Relative Helicity and Bulk Shear in Supercell Thunderstorm Environments. Weather and Forecasting, 22, 102-115.
https://doi.org/10.1175/WAF969.1
[21] Markowski, P.M., Straka, J.M., Rasmussen, E.N., et al. (1998) Variability of Storm-Relative Helicity during Vortex. Monthly Weather Review, 126, 2959-2971.
https://doi.org/10.1175/1520-0493(1998)126<2959:VOSRHD>2.0.CO;2
[22] 李耀辉, 寿绍文. 旋转风螺旋度及其在暴雨演变过程中的作用[J]. 南京气象学院学报, 1999, 22(1): 95-102.
[23] Dunkerton, T.J., Montgomery, M.T. and Wang, Z. (2009) Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves, Atmos. Chemical Physics, 9, 5587-5646.
https://doi.org/10.5194/acp-9-5587-2009
[24] 王静. GRAPES西南低涡集合预报评估及ETKF初值扰动方法改进[D]: [硕士学位论文]. 中国气象科学研究院, 2017.