长链非编码RNA在神经系统疾病中的研究进展
Advance in Research on Long Noncoding RNA of Central Nervous System Diseases
DOI: 10.12677/ACM.2017.75048, PDF, HTML, XML, 下载: 1,634  浏览: 3,843 
作者: 李 舒, 毕薪燃:青岛大学附属医院神经内科,山东 青岛
关键词: 长链非编码RNA缺血性脑卒中帕金森氏病多发性硬化LncRNA Ischemic Stroke Parkinson’s Disease Multiple Sclerosis
摘要: 长链非编码RNA是长度超过200个核苷酸的非编码RNA分子,在神经系统发育、神经元分化、突触可塑性等生物过程中发挥重要作用,参与了多种神经系统疾病的发生发展过程。本文主要阐述lncRNA在神经系统疾病包括缺血性脑卒中、帕金森氏病、多发性硬化中的研究进展。
Abstract: Long noncoding RNAs (lncRNAs) represent a class of transcripts longer than 200 nucleotides but do not encode proteins. Emerging evidence shows that lncRNAs play critical roles in many biological processes, such as brain development, neural differentiation, and synaptic plasticity, and par-ticipate in the pathogenesis of a variety of central nervous system (CNS) diseases. This paper is to review the research progress of lncRNA in CNS diseases include ischemic stroke, Parkinson’s dis-ease, and multiple sclerosis.
文章引用:李舒, 毕薪燃. 长链非编码RNA在神经系统疾病中的研究进展[J]. 临床医学进展, 2017, 7(5): 290-294. https://doi.org/10.12677/ACM.2017.75048

1. 引言

长链非编码RNA (Long noncoding RNA, LncRNA)是长度超过200个核苷酸的RNA分子,不编码蛋白质。近年来,越来越多的研究显示长链非编码RNA参与了多种生物过程,如神经系统发育、神经元分化、突触可塑性 [1] ,并在脑卒中、神经退行性疾病及脑肿瘤中发挥显著作用 [2] 。LncRNA与神经系统疾病密切相关,有望成为神经系统疾病的新的生物标志物及治疗靶点。本文主要就lncRNA在缺血性脑卒中、帕金森氏病及多发性硬化中的研究进展作一综述。

2. lncRNA简介

哺乳动物基因组绝大多数被转录成RNA,然而只有2%左右的基因编码蛋白质,那些不编码蛋白质的基因的转录产物称为“非编码RNA (ncRNA)”。长链非编码RNA是长度超过200个核苷酸的非编码RNA分子,人们曾普遍认为,lncRNAs是“垃圾RNA”,不发挥生物学作用 [3] 。近年来研究发现,长链非编码RNA在细胞发育、功能维持、凋亡及疾病的发病机制中发挥关键作用。LncRNA可通过多种方式在各个阶段调控基因的表达,包括染色质修饰、基因的转录、mRNA的翻译及表观遗传调控,此外,lncRNA还能够作为竞争性内源性RNA与miRNA结合抑制miRNA的表达。

3. lncRNA与神经系统疾病

3.1. lncRNA在缺血性脑卒中中的作用

脑卒中是全球第二死亡疾病和第三致残疾病,包括缺血性脑卒中与出血性脑卒中。每年约有95.5万人出现新的或复发性脑卒中,其中87%的脑卒中是缺血性的 [4] 。最近,越来越多的证据表明非编码RNA在缺血性卒中中发挥神经保护作用。卒中后,lncRNA的表达谱发生改变。研究表明,局灶性缺血上调LncRNA FosDT的表达,进一步研究发现,局灶性缺血会增加FosDT与REST的抑制因子coREST和Sin3a的结合,而下调FosDT可抑制REST下游基因,减少缺血后梗死和运动功能障碍 [5] 。在缺血/再灌注损伤后,微阵列分析检测到数百种差异表达的lncRNA。在局灶性脑缺血/再灌注小鼠模型中lncRNA C2dat1显著上调,实验证明,C2dat1诱导CaMKIIδ的表达,进而激活NF-κB信号通路促进神经元的存活 [6] 。lncRNA-N1LR被证明可能通过抑制p53的磷酸化促进对缺血性卒中的神经保护作用,可能作为缺血性脑损伤后治疗性干预的潜在靶标 [7] 。

缺血性脑损伤后的血管生成有助于缺血区血液供应的恢复,改善血管生成可能有助于卒中后的功能恢复。脑卒中后的血管生成受血管生成因子和抗血管生成因子如VEGF、BDNF和bFGF的调节,研究表明,长链非编码RNA与血管形成的关键调节因子相关 [8] 。研究发现,过表达lncRNA ANRIL通过激活NF-κB信号通路上调大鼠VEGF表达、促进血管生成 [9] 。缺血性脑卒中后大鼠的lncRNAs Meg3表达显著降低,进一步上调Meg3的表达可以抑制缺血性卒中后的功能恢复及降低毛细血管密度,下调Meg3表达能改善卒中后脑损伤,增加血管生成;并且发现,下调Meg3的促血管生成作用机制可能与Notch信号的激活有关 [8] 。

3.2. lncRNA在帕金森氏病中的作用

随着人口老龄化的增加,神经退行性疾病对家庭和社会造成了巨大负担 [10] 。帕金森氏病(Parkinson’s disease, PD)是一种常见的慢性进行性神经退行性疾病,导致运动缓慢、震颤、步态和平衡障碍等运动功能受损及多种非运动症状,如直立性低血压、便秘、睡眠障碍 [11] 。以前,帕金森氏病被认为主要是由环境因素引起的,但研究表明,帕金森氏病是由基因与环境因素的复杂的相互作用所致 [12] 。LncRNA表达谱分析显示,帕金森氏病患者的脑组织标本中有5种lncRNA表达具有显著差异,包括H19、lincRNA-p21、Malat1、SNHG1和TncRNA;分析显示,这些差异表达的lncRNA在帕金森氏病的早期阶段已经被改变,并先于PD进程,可能称为帕金森氏病新的潜在生物标志物 [13] 。MPP+处理SH-SY5Y建立PD的体外细胞模型,发现MPP+显著上调了细胞中lncRNA MALAT1及α-突触核蛋白表达水平,进一步实验显示,MALAT1的过表达能上调α-突触核蛋白表达水平,而敲低MALAT1能显著下调α-突触核蛋白表达水平 [14] ;表明lncRNA MALAT1参与了帕金森氏病的病理生理过程。对帕金森氏病患者黑质的lncRNA表达谱进行分析,发现lncRNA AL049437和lncRNA AK021630表达水平变化最明显,AL049437在PD患者黑质样本中上调,而AK021630则下调,紧接着实验发现lncRNA AL049437可能增加患PD的风险,而lncRNA AK021630可能抑制PD的发生 [15] 。在帕金森氏病小鼠模型的中脑中,lncRNA HOTAIR表达上调,进一步研究发现HOTAIR通过调节LRRK2表达促进MPTP诱导的PD [16] 。

由与正义链互补配对的反义链转录而来的RNA分子称为反义转录物,反义lncRNA能够在不同水平调控基因的表达。UCHL1/PARK5的错义突变与早发性家族性PD有关,lncRNA AS Uchl1是UCHL1的反义转录物,通过作用于Uchl1 mRNA增加Uchl1蛋白的表达,因此调控AS Uchl1的表达可能作为帕金森氏病治疗干预的工具 [17] 。微管相关蛋白tau (MAPT)基因是散发性PD相关基因,其编码的蛋白质有助于稳定轴突细胞骨架。已证明在帕金森氏病患者的白细胞和脑组织中,MAPT启动子发生异常甲基化 [18] 。另有研究表明,MAPT的高表达可能导致神经变性的增加 [19] 。MAPT-AS1是从MAPT启动子区域的反义链转录的长840 bp的lncRNA,能够调节MAPT启动子活性及甲基化,被认为是PD中MAPT表达的潜在的表观遗传调控因子 [20] 。

3.3. lncRNA与多发性硬化

多发性硬化(MS)是中枢神经系统的慢性炎性脱髓鞘疾病,以轴索变性和神经胶质细胞增生为特征,导致严重的神经功能障碍。与健康对照组相比,多发性硬化患者血清中有84种lncRNA已验证或预测能够调节促炎基因、抗炎基因和微小RNA的表达,其中RN7SK RNA、TUG1和NEAT1的表达显着上调 [21] 。实验发现,多发性硬化患者循环血细胞中有三种lncRNA表达失调,PVT1和FAS-AS1表达显著下调,THRIL表达显著上调,但这些lncRNA的具体调节机制需要进一步探究 [22] 。维生素D作为免疫调节剂被广泛用于多发性硬化患者,数据显示,lncRNA HOTAIR可能与MS的发病机制密切相关,但其作用机制尚不明确,而炎症和VD可能通过影响HOTAIR的表达影响HOTAIR相关机制 [23] 。

3.4. lncRNA与神经系统其他疾病

此外,lncRNA也在阿尔茨海默病、亨廷顿病、肌萎缩侧索硬化症、脑膜瘤、神经胶质瘤的发生、发展中起重要作用。

4. 小结

长链非编码RNA在神经系统疾病包括脑卒中、帕金森氏病、多发性硬化等的发生、发展中扮演着重要角色。随着高通里测序技术和生物信息学的发展,对lncRNA在神经系统疾病中的作用机制的研究将不断深入,其可能成为神经系统疾病的新的RNA分子标记物,并为神经系统疾病的预防和治疗提供更多的理论指导。

参考文献

[1] Wu, P., et al. (2013) Roles of Long Noncoding RNAs in Brain Development, Functional Diversification and Neuro-degenerative Diseases. Brain Research Bulletin, 97, 69-80.
https://doi.org/10.1016/j.brainresbull.2013.06.001
[2] Qureshi, I.A. and Mehler, M.F. (2013) Long Non-Coding RNAs: Novel Targets for Nervous System Disease Diagnosis and Therapy. Neurotherapeutics, 10, 632-646.
https://doi.org/10.1007/s13311-013-0199-0
[3] Wang, J., Song, Y.X. and Wang, Z.N. (2015) Non-Coding RNAs in Gastric Cancer. Gene, 560, 1-8.
https://doi.org/10.1016/j.gene.2015.02.004
[4] Writing Group, M., et al. (2016) Heart Disease and Stroke Sta-tistics-2016 Update: A Report from the American Heart Association. Circulation, 133, e38-e360.
https://doi.org/10.1161/CIR.0000000000000350
[5] Mehta, S.L., Kim, T. and Vemuganti, R. (2015) Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. Journal of Neuroscience, 35, 16443-16449.
https://doi.org/10.1523/JNEUROSCI.2943-15.2015
[6] Xu, Q., et al. (2016) Long Non-Coding RNA C2dat1 Regulates CaMKIIdelta Expression to Promote Neuronal Survival through the NF-kappaB Signaling Pathway Following Cerebral Ischemia. Cell Death & Disease, 7, e2173.
https://doi.org/10.1038/cddis.2016.57
[7] Wu, Z., et al. (2016) LncRNA-N1LR Enhances Neuroprotection against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation. Molecular Neurobiology.
[8] Liu, J., et al. (2016) Downregulation of the Long Non-Coding RNA Meg3 Promotes Angiogenesis after Ischemic Brain Injury by Activating Notch Signaling. Molecular Neurobiology.
[9] Zhang, B., et al. (2017) Overexpression of lncRNA ANRIL Up-Regulates VEGF Expression and Promotes Angiogenesis of Diabetes Mellitus Combined with Cerebral Infarction by Activating NF-kappaB Signaling Pathway in a Ratmodel. Oncotarget, 8, 17347-17359.
[10] McGurk, L., Berson, A. and Bonini, N.M. (2015) Drosophila as an in Vivo Model for Human Neurodegenerative Disease. Genetics, 201, 377-402.
https://doi.org/10.1534/genetics.115.179457
[11] Sveinbjornsdottir, S. (2016) The Clinical Symptoms of Parkinson’s Disease. Journal of Neurochemistry, 139, 318-324.
https://doi.org/10.1111/jnc.13691
[12] Kalia, L.V. and Lang, A.E. (2015) Parkinson’s Disease. Lancet, 386, 896-912.
https://doi.org/10.1016/S0140-6736(14)61393-3
[13] Kraus, T.F.J., et al. (2017) Altered Long Noncoding RNA Expression Precedes the Course of Parkinson’s Disease—A Preliminary Report. Molecular Neurobiology, 54, 2869-2877.
https://doi.org/10.1007/s12035-016-9854-x
[14] Zhang, Q.S., et al. (2016) Beta-Asarone Protects against MPTP-Induced Parkinson’s Disease via Regulating Longnon-Coding RNA MALAT1 and Inhibiting Al-pha-Synuclein Protein Expression. Biomedicine & Pharmacotherapy, 83, 153-159.
https://doi.org/10.1016/j.biopha.2016.06.017
[15] Ni, Y., et al. (2017) Investigation of Long Non-Coding RNA Expression Profiles in the Substantia Nigra of Parkinson’s Disease. Cellular and Molecular Neurobiology, 37, 329-338.
https://doi.org/10.1007/s10571-016-0373-0
[16] Liu, S., et al. (2016) Long Non-Coding RNA HOTAIR Pro-motes Parkinson’s Disease Induced by MPTP through Up-Regulating the Expression of LRRK2. Current Neurovascu-lar Research, 13, 115-120.
https://doi.org/10.2174/1567202613666160316155228
[17] Carrieri, C., et al. (2015) Expression Analysis of the Long Non-Coding RNA Antisense to Uchl1 (AS Uchl1) during Dopaminergic Cells’ Differentiation in Vitro and in Neurochemical Models of Parkinson’s Disease. Frontiers in Cellular Neuroscience, 9, 114.
[18] Masliah, E., et al. (2013) Distinctive Patterns of DNA Methylation Associated with Parkinson Disease: Identification of Concordant Ep-igenetic Changes in Brain and Peripheral Blood Leukocytes. Epigenetics, 8, 1030-1038.
https://doi.org/10.4161/epi.25865
[19] Adams, S.J., et al. (2009) Over-Expression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration. American Journal of Pathology, 175, 1598-1609.
https://doi.org/10.2353/ajpath.2009.090462
[20] Coupland, K.G., et al. (2016) Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson’s Disease. PLoS ONE, 11, e0157924.
https://doi.org/10.1371/journal.pone.0157924
[21] Santoro, M., et al. (2016) Expression Profile of Long Non-Coding RNAs in Serum of Patients with Multiple Sclerosis. Journal of Molecular Neuroscience, 59, 18-23.
https://doi.org/10.1007/s12031-016-0741-8
[22] Eftekharian, M.M., et al. (2017) Expression Analysis of Long Non-Coding RNAs in the Blood of Multiple Sclerosis Patients. Journal of Molecular Neuroscience, 63, 333-341.
https://doi.org/10.1007/s12031-017-0982-1
[23] Pahlevan Kakhki, M., et al. (2017) HOTAIR But Not ANRIL Long Non-Coding RNA Contributes to the Pathogenesis of Multiple Sclerosis. Immunology.
https://doi.org/10.1111/imm.12850