云南糯玉米龙须的化学成分研究
Studies on Chemical Constituents from the Style of Zea mays
DOI: 10.12677/JOCR.2017.54021, PDF, HTML, XML, 下载: 1,418  浏览: 3,477  科研立项经费支持
作者: 张 玲, 张天栋, 胡巍耀, 朱保昆, 蔡 波, 杨干栩, 赵 蔚, 赵英良:云南中烟工业有限责任公司,云南 昆明
关键词: 糯玉米化学成分分离鉴定Zea mays Chemical Constituents Isolation Identification
摘要: 本论文研究了云南产的糯玉米的化学成分。采用正相硅胶、凝胶及反相材料进行化合物的分离和纯化,采用IR、NMR、MS等现代波谱分析鉴定化合物的结构。结果:从云南产的糯玉米中分离得到个12化合物,它们分别为:7-羟基-4’-甲氧基异黄酮(1)、柯伊利素-6-C-β-波伊文糖-7-O-β-葡萄糖苷(2)、豆甾-4-烯-3β,6β-二醇(3)、7α-羟基谷甾醇(4)、胡萝卜苷棕榈酸酯(5)、7α-羟基谷甾醇-3-O-β-D-葡萄糖苷(6)、棕榈酸(7)、胡萝卜苷(8)、对羟基桂皮酸(9)、香草酸(10)、大豆脑苷I (11)和 β-谷甾醇(12),以上化合物为首次从该植物中分离得到。
Abstract: In order to discovery activity ingredients, the chemical component of style of Zea mays was studied. Chemical constituents of style of Zea mays were isolated by silica gel, sephadex LH-20, and Rp-18 column chromatography. And their structures were elucidated by spectral methods. Twelve compounds were isolated, and their structures were identified as 7-hydroxy-4’-methoxyisoflavone (1), chrysoeriol-6-C-α-boivinopyranosyl-7-O-β-glucopyranoside (2), stigmasta-4-en-3β, 6β-diol (3), 7α-hydroxysitosterol (4), daucosterol plamitate (5), 7α-hydroxysitosterol-3-O-β-D-glucopyranoside (6), palmitic acid (7), daucosterol (8), p-hydroxycinnamic acid (9), vanillic acid (10), soya-cere- broside I (11), β-sitosterol (12). Above all compounds were obtained from this plant for the first time.
文章引用:张玲, 张天栋, 胡巍耀, 朱保昆, 蔡波, 杨干栩, 赵蔚, 赵英良. 云南糯玉米龙须的化学成分研究[J]. 有机化学研究, 2017, 5(4): 159-163. https://doi.org/10.12677/JOCR.2017.54021

1. 引言

糯玉米龙须是农作物糯玉米(Zea mays)的花序,糯玉米是普通玉米发生突变再经人工选育而成的新类型,营养丰富,口感好,具有防癌抗癌的功效,是天然的营养保健食品 [1] 。基于其较好的营养价值,在云南地区广泛种植,其玉米须产量很大,作为常用的中药资源,民间以玉米须煮水服用治疗水肿、高血压和糖尿病,无毒副作用,具有一定的疗效。相关药理研究表明玉米须有抗癌、降血压、降血糖、增强免疫功能和抑制黄曲霉毒素等作用 [2] 。基于以上,本课题组首次对云南产糯玉米须的化学成分进行了研究,从中分离得到12化合物,它们分别为:7-羟基-4’-甲氧基异黄酮(1)、柯伊利素-6-C-β-波伊文糖-7-O-β-葡萄糖苷(2)、豆甾-4-烯-3β,6β-二醇(3)、7α-羟基谷甾醇(4)、胡萝卜苷棕榈酸酯(5)、7α-羟基谷甾醇-3-O-β-D-葡萄糖苷(6)、棕榈酸(7)、胡萝卜苷(8)、对羟基桂皮酸(9)、香草酸(10)、大豆脑苷I (11)和β-谷甾醇(12)。以上化合物为首次从该植物中分离得到。

2. 仪器与材料

柱层析和薄层层析硅胶板购自于青岛海洋化工厂;RP-18反相材料为Merck公司生产;葡聚糖凝胶Pharmadex LH-20为安法玛西亚技术上海有限公司生产;质谱数据由Agilent G3250AA LC/MSD TOF质谱仪测定;NMR在Bruker AV-500型核磁共振波谱仪测定(TMS为内标,δ为ppm,J为Hz)。

植物样品糯玉米须于2016年8月收购于云南西双版纳;标本保存于云南中烟工业有限责任公司技术中心(标本号:2016-zl-1)。

3. 提取与分离

2.0 kg阴干粉碎后的糯玉米须经60%的乙醇室温提取48 h,重复3次,过滤回收乙醇得到总浸膏(320 g)。浸膏用水分散后依次用石油醚、氯仿、乙酸乙酯和正丁醇萃取,得到石油醚提取物(85 g),氯仿提取物(34 g),乙酸乙酯提取物(51 g)和正丁醇提取物(90 g)。

氯仿提取物(34 g)经硅胶柱层析梯度洗脱[氯仿–甲醇(99:1-6:1)],等量接收并合并相同组分得到5个部分(Fr.A1-Fr.A5)。Fr.A2经硅胶柱层析经硅胶柱层析[石油醚–丙酮(4:1)]洗脱得到化合物5 (25 mg)。Fr.A3经硅胶柱层析[石油醚–丙酮(3:1)]洗脱得到化合物6 (20 mg)和7 (8 mg)。Fr.A5经硅胶柱层析[石油醚–丙酮(2:1)]洗脱得到化合物8 (15 mg)、10 (19 mg)、11 (28 mg)和12 (35 mg)。

乙酸乙酯部分(51 g)经硅胶柱层析[氯仿–甲醇(100:1-4:1)]梯度洗脱,等量接收并合并相同部分得到7个部分(Fr.B1-Fr.B7)。Fr.B2 (1.4 g)经硅胶柱层析[石油醚–丙酮(2: 1)]洗脱得到化合物9 (10 mg)。

正丁醇部分(90 g)经D101大孔吸附树脂脱糖得到浸膏(61 g),经硅胶柱层析[氯仿–甲醇–甲酸 (95:5:1-30:10:1)]梯度洗脱,等量接收并合并相同组分得到7个部分(Fr.C1-Fr.C7)。Fr.C2 (4.1 g)经聚酰胺柱层析[水:甲醇(1:0-0:1)]、Rp18反相硅胶柱层析[水:甲醇 (2:1-1:2)]和凝胶柱层析(甲醇)得到化合物1 (5 mg)和3 (6 mg)。Fr.C3 (1.2 g)经硅胶柱层析[氯仿–甲醇(6:1)]洗脱得到化合物4 (11 mg)。Fr.C5 (1.1 g)经硅胶柱层析[氯仿–甲醇(5:1)]洗脱得到化合物2 (11 mg)。

4. 结构鉴定

化合物1:白色针状结晶(甲醇)。1H NMR (400 MHz, MeOD) δ:8.29 (1H, s, H-2),7.51 (2H, d, J = 8.2, H-2’, 6’),6.89 (2H, d, J = 8.4, H-3’, 5’),7.95 (1H, d, J = 8.8, H-5),6.90 (1H, dd, J = 8.8, 2.0, H-6),6.83 (1H, s, H-8),3.73 (3H, s, 4-OCH3)。13C NMR (100 MHz, MeOD) δ:151.2 (C-2),121.1 (C-3),172.5 (C-4),114.8 (C-4a),125.6 (C-5),113.5 (C-6),160.4 (C-7),100.4 (C-8),155.2 (C-8a),122.9 (C-1'),128.5 (C-2'),111.3 (C-3'),157.2 (C-4'),111.3 (C-5'),128.2 (C-6'),53.0 (4-OCH3)。以上数据与文献 [3] 报道一致,鉴定化合物1为刺芒柄花素(7-羟基-4’-甲氧基异黄酮).

化合物2:黄色无定形粉末,1H NMR (400 MHz, pyridine-d5) δ:7.55 (1H, d, J = 8.4 Hz, H-6'),7.52 (1H, s, H-2'),7.20 (1H, s, H-8),7.00 (1H, d, J = 8.4 Hz, H-5'),6.87 (1H, s, H-3),6.25 (1H, d, J = 12.2 Hz, H-1),5.42 (1H, d, J = 7.6 Hz, H-1'),3.56 (3H, s, 3'-OCH3),1.43 (3H, d, J = 6.6 Hz, H-6);13C NMR (100 MHz, pyridine-d5) δ:164.1 (C-2),103.9 (C-3),183.0 (C-4),159.1 (C-5),113.9 (C-6),163.5 (C-7),95.1 (C-8),156.8 (C-9),105.9 (C-10),122.0 (C-1'),110.0 (C-2'),148.5 (C-3'),152.0 (C-4'),116.2 (C-5'),120.6 (C-6'),65.8 (C-1),31.4 (C-2),67.8 (C-3),71.1 (C-4),71.9 (C-5),17.2 (C-6),103.2 (C-1'),74.7 (C-2'),77.0 (C-3'),70.9 (C-4'),79.2 (C-5'),61.3 (C-6'),55.4 (3'-OCH3)。以上数据与文献 [4] 报道一致,鉴定化合物2为柯伊利素-6-C-β-波伊文糖-7-O-β-葡萄糖苷。

化合物3:白色无定形粉末,1H NMR (400 MHz, CDCl3) δ:5.81 (1H, brs, H-4),4.39 (1H, brs, H-6),4.38 (1H, brs, H-3),1.40 (3H, s, H-19),0.93 (3H, d, J = 6.2 Hz, H-21),0.75 (3H, s, H-18);13C NMR (100 MHz, CDCl3) δ:36.8 (C-1),29.3 (C-2),73.2 (C-3),129.0 (C-4),146.9 (C-5),67.2 (C-6),29.9 (C-7),55.8 (C-8),36.2 (C-9),37.1 (C-10),40.0 (C-11),39.5 (C-12),42.7 (C-13),56.5 (C-14),24.9 (C-15),29.5 (C-16),56.0 (C-17),12.1 (C-18),21.5 (C-19),29.2 (C-20),18.7 (C-21),34.0 (C-22),26.1 (C-23),45.9 (C-24),30.2 (C-25),19.6 (C-26),19.9 (C-27),23.4 (C-28),11.9 (C-29)。以上数据与文献 [5] 报道一致,鉴定化合物3为豆甾-4-烯-3β,6β-二醇。

化合物4:白色无定形粉末,1H NMR (400 MHz, CDCl3) δ:5.65 (1H, d, J = 5.2 Hz, H-6),3.91 (1H, m, H-7),3.62 (1H, m, H-3),1.06 (3H, s, H-19),0.95 (3H, d, J = 6.2 Hz, H-21),0.74 (3H, s, H-18);13C NMR (100 MHz, CDCl3) δ:37.4 (C-1),31.8 (C-2),71.9 (C-3),42.5 (C-4),146.8 (C-5),124.5 (C-6),65.9 (C-7),37.6 (C-8),42.8 (C-9),37.9 (C-10),21.3 (C-11),39.6 (C-12),42.7 (C-13),49.9 (C-14),24.9 (C-15),28.8 (C-16),56.4 (C-17),12.3 (C-18),18.7 (C-19),36.6 (C-20),19.4 (C-21),34.3 (C-22),29.7 (C-23),46.5 (C-24),26.6 (C-25),19.3 (C-26),20.2 (C-27),23.5 (C-28),12.6 (C-29)。以上数据及显色与文献 [5] 报道一致,鉴定化合物4为7α-羟基谷甾醇。

化合物5:白色无定形粉末,1H NMR (400 MHz, CDCl3) δ:5.30 (1H, brs, H-6),4.32 (1H, d, J = 7.2 Hz, H-1'),0.95 (3H, s, H-19),0.65 (3H, s, H-18);13C NMR (100 MHz, CDCl3) δ:37.2 (C-1),28.1 (C-2),79.5 (C-3),38.8 (C-4),140.3 (C-5),122.0 (C-6),31.8 (C-7),31.8 (C-8),50.1 (C-9),36.7 (C-10),21.0 (C-11),39.6 (C-12),42.3 (C-13),56.6 (C-14),24.7 (C-15),28.5 (C-16),56.1 (C-17),11.7 (C-18),19.4 (C-19),36.1 (C-20),18.8 (C- 21),34.0 (C-22),26.2 (C-23),45.8 (C-24),29.1 (C-25),19.6 (C-26),19.0 (C-27),23.0 (C-28),11.9 (C-29),101.2 (C-1'),73.3 (C-2'),76.2 (C-3'),70.2 (C-4'),73.7 (C-5'),63.3 (C-6'),174.1 (C-1),34.2 (C-2),24.8 (C-3),29.2~30.2 (C-4-13),31.8 (C-14),22.6 (C-15),14.1 (C-16)。以上数据与文献 [6] 报道一致,鉴定化合物5为胡萝卜苷棕榈酸酯。

化合物6:白色无定形粉末,1H NMR (400 MHz, CD3OD) δ:5.59 (1H, d, J = 5.2 Hz, H-6),4.40 (1H, d, J = 7.6 Hz, H-1'),3.68 (2H, m, H-3, 7),1.03 (3H, s, H-19),0.99 (3H, d, J = 6.6 Hz, H-21),0.75 (3H, s, H-18);13C NMR (100 MHz, CD3OD):38.6 (C-1),30.9 (C-2),79.9 (C-3),40.2 (C-4),146.8 (C-5),125.7 (C-6),66.3 (C-7),39.3 (C-8),43.8 (C-9),39.4 (C-10),22.3 (C-11),41.2 (C-12),43.7 (C-13),50.9 (C-14),25.5 (C-15),29.8 (C-16),57.7 (C-17),12.8 (C-18),19.2 (C-19),37.9 (C-20),19.8 (C-21),35.5 (C-22),30.8 (C-23),47.7 (C-24),27.6 (C-25),19.8 (C-26),20.7 (C-27),24.6 (C-28),12.4 (C-29),102.8 (C-1'),75.5 (C-2'),78.4 (C-3'),71.9 (C-4'),78.6 (C-5'),63.2 (C-6')。以上数据与文献 [7] 报道一致,鉴定化合物6为7α-羟基谷甾醇-3-O-β-D-葡萄糖苷。

化合物7:白色无定形粉末,1H NMR (400 MHz, CDCl3) δ:2.35 (2H, t, J = 7.4 Hz, H-2),2.06 (2H, m, H-3),1.65 (2H, m, H-4),1.27 (2H, m, H-15),0.90 (2H, t, J = 7.4 Hz, H-16),1.33 (20H, m, H-5-14);13C NMR (100 MHz, CDCl3) δ:179.2 (C-1),33.2 (C-2),31.1 (C-3),29.0 (C-4-13),24.0 (C-14),24.0 (C-15),21.9 (C-16)。以上数据与文献 [6] 报道一致,鉴定化合物7为棕榈酸。

化合物8:白色无定形粉末,1H NMR (400 MHz, pyridine-d5) δ:5.31 (1H, brs, H-6),5.00 (1H, d, J = 7.4Hz, H-1'),1.01 (3H, d, J = 5.4 Hz, H-21),0.90 (3H, s, H-19),0.85 (6H, d, J = 6.6 Hz, H-26, 27),0.63 (3H, s, H-18);13C NMR (100 MHz, pyridine-d5) δ:37.9 (C-1),28.8 (C-2),79.1 (C-3),39.9 (C-4),141.4 (C-5),122.4 (C-6),32.7 (C-7),32.6 (C-8),50.9 (C-9),37.5 (C-10),21.8 (C-11),40.6 (C-12),42.9 (C-13),57.4 (C-14),25.0 (C-15),26.9 (C-16),56.8 (C-17),12.7 (C-18),20.5 (C-19),36.9 (C-20),19.5 (C-21),34.7 (C-22),23.9 (C-23),46.7 (C-24),30.7 (C-25),19.9 (C-26),19.8 (C-27),29.9 (C-28),12.5 (C-29),103.1 (C-1'),75.8 (C-2'),78.9 (C-3'),72.2 (C-4'),78.6 (C-5'),63.2 (C-6')。以上数据与文献 [6] 报道一致,鉴定化合物8为胡萝卜苷。

化合物9:黄色粉末,1H NMR (400 MHz, DMSO-d6) δ:7.55 (2H, d, J = 8.4 Hz, H-2, 6),7.53 (1H, d, J = 15.6 Hz, H-7),6.82 (2H, d, J = 8.2 Hz, H-3, 5),6.34 (1H, d, J = 16.0 Hz, H-8)。13C NMR (100 MHz, DMSO-d6) δ:124.9 (C-1),129.1 (C-2, 6),115.0 (C-3, 5),158.8 (C-4),143.4 (C-7),114.6 (C-8),167.2 (C-9)。以上数据与文献 [8] 报道一致,鉴定化合物9为对羟基桂皮酸。

化合物10:淡黄色粉末,1H NMR (400 MHz, DMSO-d6) δ:12.33 (1H, s, COOH),7.68 (1H, s, 4-OH),3.72 (3H, s, OCH3),6.73 (1H, dd, J = 6.6, 2.4 Hz, H-5),7.35 (1H, dd, J = 6.6, 2.2 Hz, H-6),7.32 (1H, d, J = 2.2 Hz, H-2)。13C NMR (100 MHz, DMSO-d6) δ:168.2 (COOH),56.3 (OCH3),122.6 (C-1),113.7 (C-2),148.3 (C-3),152.2 (C-4),116.1 (C-5),124.3 (C-6)。以上数据与文献 [8] 报道一致,鉴定化合物10为香草酸。

化合物11:白色粉末,1H NMR (400 MHZ, pyridine-d5) δ:5.94 (1H, dd, J = 16.0, 11.0 Hz, H-4),5.48 (1H, d, J = 16.0 Hz, H-5),5.47 (1H, m, H-9),5.26 (1H, m, H-8),4.88 (1H, dd, J = 11.0, 5.4 Hz, H-1),4.46 (1H, m, H-2′),4.16 (1H, m, H-3),3.54 (1H, m, H-2),0.83 (6H, t, J = 5.4 Hz, H-18, 16′);13C NMR (100 MHz, pyridine-d5) δ:72.0 (C-1),55.1 (C-2),72.8 (C-3),131.7 (C-4),132.6 (C-5),33.4 (C-6),32.6 (C-7),130.3 (C-8),132.3 (C-9),33.1 (C-10),29.6~30.2 (C-11-16),23.4 (C-17),14.8 (C-18);176.2 (C-1′),72.8 (C-2′),36.1 (C-3′),25.8 (C-4′),29.6~30.0 (C-5-15′),14.7 (C-16′),106.2 (C-1′′),75.6 (C-2′′),79.1 (C-3′′),70.9 (C-4′′),79.0 (C-5′′),63.2 (C-6′′)。以上数据与文献 [6] 报道一致,鉴定化合物11鉴定为大豆脑苷I。

化合物12:白色针尖(氯仿),1H NMR (400 MHz, CDCl3) δ:3.61 (1H, m H-3),5.45 (1H, m, H-6),0.77 (3H, s, 18-CH3),1.11 (3H, s, 19-CH3),1.02 (3H, J = 6.4 Hz, 21-CH3)。1H NMR (100 MHz, CDCl3) δ:37.7 (C-1),32.1 (C-2),72.3 (C-3),42.7 (C-4),141.1 (C-5),122.2 (C-6),32.3 (C-7),32.3 (C-8),51.6 (C-9),36.9 (C-10),21.5 (C-11),40.1 (C-12),42.8 (C-13),57.2 (C-14),24.7 (C-15),28.8 (C-16),56.4 (C-17),12.5 (C-18),19.8 (C-19),36.6 (C-20),19.2 (C-21),34.5 (C-22),26.5 (C-23),46.3 (C-24),30.2 (C-25),20.3 (C-26),19.5 (C-27),23.6 (C-28),12.5 (C-29)。以上数据与文献 [9] 报道一致,鉴定化合物12为β-谷甾醇。

5. 结论

通过现代分离技术手段,从云南产糯玉米须中分离得到12个化合物,它们分别为:7-羟基-4’-甲氧基异黄酮(1)、柯伊利素-6-C-β-波伊文糖-7-O-β-葡萄糖苷(2)、豆甾-4-烯-3β,6β-二醇(3)、7α-羟基谷甾醇(4)、胡萝卜苷棕榈酸酯(5)、7α-羟基谷甾醇-3-O-β-D-葡萄糖苷(6)、棕榈酸(7)、胡萝卜苷(8)、对羟基桂皮酸(9)、香草酸(10)、大豆脑苷I (11)和β-谷甾醇(12)。以上化合物为首次从云南产糯玉米须中分离得到,为开发利用云南产糯玉米须提供科学依据。

致谢

本研究工作得到了云南中烟工业有限责任公司科技项目(2017CP04)的经费支持。

参考文献

[1] Wang, Y.P. and Li, X.G. (2004) Progress in Study on Chemical Constituent and Pharmacological Activity of Corn Silk. Special Wild Economic Animal and Plant Research, 3, 42-46.
[2] Neucere, H. and Joseph, N. (1996) Inhibition of Aspergillus favus Growth by Silk Extracts of Resistant an Susceptible Corn. Journal of Agricultural and Food Chemistry, 44, 1982-1986.
https://doi.org/10.1021/jf950609x
[3] 张慧恩, 徐德平. 玉米须黄酮类成分的研究[J]. 中药材, 2007, 30(2): 164-166.
[4] Suzuki, R., Okada, Y. and Okuyama T. (2003) Two Flavone C-Glycosides from the Style of Zea mays with Glycation Inhibitory Activity. Journal of Natural Products, 66, 564-565.
https://doi.org/10.1021/np020256d
[5] 徐燕, 梁敬钰. 玉米须的化学成分研究[J]. 中草药, 2006, 37(6): 831-833.
[6] 刘传水, 太志刚, 李爱梅, 蔡乐, 丁中涛. 云南产玉米须的化学成分研究[J]. 天然产物研究与开发, 2011, 23(6): 1041-1044.
[7] Chaurasia, N. and Wichtl, M. (1987) Stetols and Steryl Glycosides from Urtica dioica. Journal of Natural Products, 50, 881-885.
https://doi.org/10.1021/np50053a018
[8] 徐燕, 邹忠梅, 梁敬钰. 玉米须的化学成分[J]. 中国天然药物, 2008, 6(3): 237-238.
[9] 张帼威, 吴奶珠, 范强, 周先礼, 黄帅. 狭叶瓶尔小草化学成分的研究[J]. 天然产物研究与开发, 2010, 22(6): 1006-1008.