# 西安市主要河流纳污能力及污染物总量控制探析Analysis of Pollution Absorption Capacity and Total Pollutant Control of Main Rivers in Xi’an City

• 全文下载: PDF(465KB)    PP.207-214   DOI: 10.12677/JWRR.2018.72023
• 下载量: 317  浏览量: 1,099

Based on the analysis of the basic conditions of the main rivers in Xi'an, under the conditions of the current and planned water quality objectives, the designed discharge, the comprehensive attenuation coefficient of pollutants and the water quality background of the river water function area, the one-dimensional water quality model is used to calculate the capacity of the river water function area. Based on the investigation and analysis of the water environment and the amount of pollutants entering the river in the current year, the discharge and the amount of pollutants into the river in the planning year are predicted. According to the capacity of pollutant absorption and the amount of pollutants entering into the river, a scheme of controlling the amount of pollutants entering the river in the planned year is put forward, which can provide technical support for the pollution control and water resources protection of Xi’an river. Results show that the reduction of COD in Heihe River is 0 in the planning year, 1.6 t in 2020 and 0.6 t in 2030; the reduction of COD in Bahe reaches 4215.2 t in 2020, 4401.8 t in 2030, 624.5 t in 2020 and 696.8 t in 2020.

1. 引言

2. 河流水环境现状

Table 1. Basic situation statistics of research rivers

Figure 1. Schematic map of the study river

3. 河流纳污能力计算

3.1. 计算模型

${W}_{纳}=86.4\left\{{C}_{S}\left({Q}_{0}+\sum {q}_{i}\right)-{C}_{0}{Q}_{0}\mathrm{exp}\left(-k\frac{x}{u}\right)+\sum {q}_{i}{C}_{i}\left(1-\mathrm{exp}\left(-k\frac{{x}_{i}}{u}\right)\right)\right\}$

3.2. 参数确定

1) 设计流量及流速

2) 综合衰减系数(k)

3.3. 纳污能力计算

4. 规划年污染物预测

2030年黑河、沣河和灞河废污水入河量分别为389.7万t、140.7万t、6866.1万t，COD入河量分别为197.0 t、538.6 t、6356.4 t，氨氮入河量分别为36.0 t、51.4 t、809.8 t。

5. 污染物总量控制方案

5.1. 控制原则

2020年：据西安市最严格水资源管理制度近期规划目标“2020年省级考核河流水功能区水质100%达标，市级河流80%达标”的要求，结合2020年各河流水功能区污染物排放量与相应纳污能力的对比，经综合分析各河流治理难度，拟定2020年黑河全段、沣河全段、灞河源头水保护区为水功能区达标河段，按以下原则进行控制：

1) 若入河量小于纳污能力，则入河量作为其入河控制量。

2) 若入河量大于或等于纳污能力，入河控制量等于纳污能力。入河削减量等于入河量与纳污能力之差。

Table 2. Results table for the accounting of river pollution absorption capacity

Table 3. Calculation results of pollutant inflow in planning year

1) 若入河量大于纳污能力，且入河削减量在40%以内可达到功能区要求的(入河量小于或等于纳污能力)，则按达标处理，即入河控制量等于纳污能力。

2) 若入河量大于纳污能力，且入河削减量在40%以上仍不能达到功能区要求的，入河削减量应在70%以上。

2030年：据西安市最严格水资源管理制度远期规划目标“2030年所有河流水功能区水质100%达标”的要求，拟定2030年污染物入河控制原则：

1) 若入河量小于纳污能力，则入河量作为其入河控制量。

2) 若入河量大于或等于纳污能力，入河控制量等于纳污能力。入河削减量等于入河量与纳污能力之差。

Table 4. Pollutant inflow control scheme (unit: t/a)

5.2. 污染物控制量与削减量

2020年黑河全河段COD入河控制量193 t，入河削减量0；氨氮入河控制量35.4 t，入河削减量1.6 t。沣河全河段COD入河控制量357.8 t，入河削减量181.2；氨氮入河控制量19.3 t，入河削减量31.9 t。灞河全河段COD入河控制量2288.5 t，入河削减量4215.2 t；氨氮入河控制量205.6 t，入河削减量624.5 t。

2030年黑河全河段COD入河控制量197 t，入河削减量0；氨氮入河控制量35.4 t，入河削减量0.6 t。沣河全河段COD入河控制量357.8 t，入河削减量180.8；氨氮入河控制量19.3 t，入河削减量32.1 t。灞河全河段COD入河控制量1954.6 t，入河削减量4401.8 t；氨氮入河控制量113.0 t，入河削减量696.8 t。

6. 结论

1) 采用一维水质模型核算了黑河、沣河和灞河3条河流水功能区的纳污能力。规划年黑河、沣河及灞河COD的纳污能力分别为456.0 t/a、357.8 t/a和1954.6 t/a；氨氮的纳污能力分别为35.4 t/a、19.3 t/a和113.0 t/a。

2) 在分析现状年河流水环境状况和污染物入河量的基础上，预测了规划年生活和工业污染物的排放量和入河量。2020年黑河、沣河和灞河3条河流COD入河量分别为196.8 t、539.0 t、6503.6 t，氨氮入河量分别为37.0 t、51.2 t、830.1 t。2030年黑河、沣河和灞河3条河流COD入河量分别为197.0 t、538.6 t、6356.4 t，氨氮入河量分别为36.0 t、51.4 t、809.8 t。

3) 通过对上述3条河流规划年污染物入河量与相应纳污能力的对比分析，提出了3条河流的污染物入河控制量和入河削减量，其中黑河污染物入河削减量任务最轻，2020年COD入河削减量0，氨氮入河削减量1.6 t；2030年COD入河削减量0；氨氮入河削减量0.6 t。灞河最为繁重，2020年COD入河削减量4215.2 t；氨氮入河削减量624.5 t；2030年COD入河削减量4401.8 t；氨氮入河削减量696.8 t。

4) 除采取新建或扩建污水处理厂，增强污水处理能力，降低污染物排放量和入河量外，还应积极采取非工程措施 [14] ，如建立统一、高效、协调的水资源保护管理体制，加强流域水资源管理；加强入河排污口设置的管理，规范排污口设置审批工作；加强水资源保护的舆论宣传和监督，注重水资源保护与管理的科学研究等，努力实现水资源的可持续利用，为西安水生态文明城市建设保驾护航。

 [1] 赵宪伟. 省域COD排放总量预测及减排潜力与对策研究[D]: [博士学位论文]. 北京: 中国地质大学, 2010. ZHAO Xianwei. Study on Provincial COD emission forecast and reduction potential and countermeasures. Beijing: China University of Geosciences, 2010.(in Chinese) [2] 叶旭. 温瑞塘河流域水污染总量控制研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2002. YE Xu. Total water pollution control in Wenruitang River Basin. Hangzhou: Zhejiang University, 2002. (in Chinese) [3] 李家科. 博斯腾湖水环境容量及污染物排放总量控制研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2004. LI Jiake. Study on water environmental capacity and total pollutant discharge control in Bosten Lake. Xi’an: Xi’an University of Science and Technology (Xi’an University of Science and Technology), 2004. (in Chinese) [4] 刘洁, 冯银厂, 朱坦. 总量控制在环境管理中应用[J]. 城市环境与城市生态, 2003(1): 59-60. LIU Jie, FENG Yinchang and ZHU Tan. Application of total quantity control in environmental management. Urban Environment and Urban Ecology, 2003(1): 59-60. (in Chinese) [5] 曲化, 张世泉, 吕家欣. 论我国现阶段实施总量控制的功能和运行机制[J]. 中国环境管理, 1997(3): 41-43. QU Hua, ZHANG Shiquan and LV Jiaxin. On the function and operating mechanism of implementing total quantity control in China at present. Environmental Management of China, 1997(3): 41-43. (in Chinese) [6] 西安市统计局. 西安统计年鉴[M]. 西安: 西安市统计局, 2016. Xi’an Bureau of Statistics. Xi’an statistical yearbook. Xi’an: Xi’an Bureau of Statistics, 2016. (in Chinese) [7] 长江流域水资源保护局. GB/T 25173-2010水域纳污能力计算规程[S]. 北京: 国家质检总局, 2010. Yangtze River Basin Water Resources Protection Bureau. GB/T 25173-2010. Code for calculation of water capacity in water. Beijing: State Quality Inspection Administration, 2010. (in Chinese) [8] 韩龙喜, 朱党生, 蒋莉华. 中小型河道纳污能力计算方法研究[J]. 河海大学学报(自然科学版), 2002, 30(1): 35-38. HAN Longxi, ZHU Dangsheng and JIANG Lihua. Study on the method of calculating the capacity of small and medium-sized rivers to absorb pollution. Journal of Hehai University, 2002, 30(1): 35-38. (in Chinese) [9] 付意成, 徐文新, 付敏. 我国水环境容量现状研究[J]. 中国水利, 2010(1): 26-31. FU Yicheng, XU Wenxin and FU Min. Study on the present situation of water environment capacity in China. China Water Conservancy Water Conservancy, 2010(1): 26-31. (in Chinese) [10] 徐仲翔, 孙建富, 章献忠, 等. WASP水质模型在兰江流域水体纳污能力计算中的应用[J]. 内蒙古环境科学, 2011, 23(10): 30-33. XU Zhongxiang, SUN Jianfu, ZHANG Xianzhong, et al. Application of WASP water quality model in the calculation of water capacity of Lanjiang River basin. Inner Mongolia Environmental Science, 2011, 23(10): 30-33. (in Chinese) [11] MILANO, M., RUELLAND, D., DEZETTER, A., et al. Modeling the current and future capacity of water resources to meet water demands in the Ebro basin. Journal of Hydrology, 2013, 500: 114-126. https://doi.org/10.1016/j.jhydrol.2013.07.010 [12] DPAOULQERIS, C., GEORGIOU, P., PAPADIMOS, D., et al. Ecosystem approach to water resources management using the MIKE11 modeling system in the Strymonas River and Lake Kerkini. Journal of Environment Management, 2012, 94(1): 132-143. https://doi.org/10.1016/j.jenvman.2011.06.023 [13] 西安市水务局. 西安市水中长期供求规划[R]. 西安: 西安市水务局, 2010. Xi’an Water Bureau. Xi’an water supply and demand planning. Xi’an: Xi’an Water Bureau, 2010. (in Chinese) [14] 赵淑兰. 浐灞河流域水功能区纳污能力及入河污染物总量控制分析[J]. 陕西水利, 2012, 23(1): 145-148. ZHAO Shulan. An analysis on the capacity of water function area of Chanhe River Basin to absorb pollution and control the total amount of pollutants into the river. Shaanxi Water Conservancy, 2012, 23(1): 145-148. (in Chinese)