活性污泥中硝酸盐异化还原成铵(DNRA)过程及其影响因素
Dominant Factors of Dissimilatory Nitrate Reduction to Ammonia (DNRA) in Activated Sludge System: A Comment
DOI: 10.12677/AEP.2018.82012, PDF, HTML, XML,  被引量 下载: 3,603  浏览: 11,475  国家自然科学基金支持
作者: 张新艳*:西安科技大学,建筑与土木工程学院,陕西 西安;西安建筑科技大学,环境与市政工程学院,陕西 西安;彭党聪:西安建筑科技大学,环境与市政工程学院,陕西 西安;万 琼, 鞠 凯, 王 娜, 张 岩:西安科技大学,建筑与土木工程学院,陕西 西安
关键词: 硝酸盐异化还原成铵(DNRA)生物脱氮活性污泥氮的转化途径Dissimilatory Nitrate Reduction to Ammonia (DNRA) Biological Nitrogen Removal Activated Sludge Nitrogen Transformation Path
摘要: 现有理论认为氨化–硝化–反硝化是活性污泥生物脱氮的主要途径,忽略了硝态氮异化还原成铵(DNRA)作用。本文从DNRA作用对脱氮的影响、DNRA的主要影响因素、菌属及种群鉴定等方面进行综述,阐述了C/N、碳源种类和浓度、硫化物、Fe2+、阴极电压等对DNRA的影响根本原因是电子供体和电子受体的比例问题,影响DNRA与反硝化及Anammox过程竞争的主要因素是电子供体/电子受体、氮源种类、污泥龄、温度和pH,提出了今后应在活性污泥生物脱氮系统对DNRA与反硝化的竞争机理、二者在各工艺系统中的种群丰度、基质和环境因素交互作用、微生物种群间信号传递以及其他氮素转化过程耦联等方面亟需深入研究。
Abstract: Ammoniation-nitrification-denitrification is always the main way to remove nitrogen from waste-water for activated sludge. However, the theory neglects the impact of dissimilatory nitrate reduc-tion to ammonia (DNRA) during nitrogen removal process. The review presents the impacts of DNRA on nitrogen removal, main mechanisms of major substrate and environmental factors on DNRA, and species identification. The main impact of C/N, types and concentration of carbon source, sulfide, Fe2+, cathode potentials et al. on DNRA is that could change the value of electron donor/electron acceptor. Then supply of electron donor/electron acceptor, nitrogen source, pH and temperature were identified as key environmental controls that whether nitrate will be reduced through DNRA, denitrification or Anammox. Further studies focus on the competitive mechanism of DNRA and denitrification, community structure, interaction of substrate and environmental factors, signal transfer between microbial population as well as other nitrogen transformation process decoupling in activated sludge system and other biosocial nitrogen removal.
文章引用:张新艳, 彭党聪, 万琼, 鞠凯, 王娜, 张岩. 活性污泥中硝酸盐异化还原成铵(DNRA)过程及其影响因素[J]. 环境保护前沿, 2018, 8(2): 95-105. https://doi.org/10.12677/AEP.2018.82012

1. 引言

活性污泥法生物脱氮主要是通过氨化–硝化–反硝化将污水中各种形式的氮转化为氮气逸出。硝态氮在污水生物处理系统中的转化途径主要有3种:一是通过反硝化作用转化为氮气,实现污水脱氮以及氮的循环(如图1(a));二是通过硝态氮异化还原成铵(Dissimilatory Nitrate Reduction to Ammonia, DNRA)作用转化为氨(如图1(a));三是通过硝态氮同化(Nitrate Assimilation, NA)作用转化为细胞(活性污泥)组分(蛋白质) (如图1(b))。其中第一种和第三种途径是污水生物脱氮的目标,需要强化,而在生长所需氮源充足的情况下,第二种途径应尽量避免。目前的研究普遍认为,脱氮效率不高的主要因素是反硝化碳源不足,缺氧和厌氧停留时间过短,导致反硝化不彻底。张新艳、郭瑜等研究中发现 [1] [2] ,DNRA作用普遍存在于活性污泥系统和其他生物脱氮系统中 [3] ,这种现象之前也被Kaspar和Flippin证实 [4] [5] ,应对DNRA在活性污泥法中扮演的角色和地位进行深入研究,丰富生物脱氮机理。

2. 活性污泥中DNRA作用的研究意义

DNRA反应过程如图1所示,细菌通过硝态氮异化还原酶NaR将 NO 3 转化为 NO 2 ,再通过亚硝态氮还原酶(NiR)将 NO 2 还原为 NH 4 + 。DNRA中亚硝态氮还原酶NiR酶是一种胞浆周围酶,由nrfA基因编码,而非反硝化细菌中的NirS基因酶编码。Darwin等人(1993) [6] 发现,细菌在有氧生长过程中,nrfA启动子的表现几乎完全被抑制,在没有亚硝态氮或硝态氮的无氧生长过程中部分诱导,只有在亚硝态氮的无氧生长过程中才被完全诱导。通过DNRA过程生成的 NH 4 + 既可以为DNRA细菌提供生长所需氮源,

Figure 1. Mechanism of nitrate transformation pathways: (a) Denitrification and DNRA; (b) Assimilatory

图1. 硝态氮代谢途径及主要机理:(a) 反硝化作用和硝酸盐异化还原成铵(DNRA)作用;(b) 同化作用

又可以将释放到胞外,其他细菌在生长氮源( NH 4 + )缺乏的时候,可以利用产生的 NH 4 + 进行生长。

活性污泥法是污水处理中普遍应用的一种方法,对于三段法的反硝化部分、高硝态氮工业废水处理等区域,氨氮作为微生物生长常用的氮源十分缺乏。三段法包括除碳、硝化和反硝化三部分,分别有相应的沉淀池和污泥回流系统,三个系统独立运行。用于脱氮的后置反硝化工艺,通常会遇到碳源和氮源不足的问题,需要投加氨氮作为氮源、甲醇作为碳源以保证微生物生长及反硝化。国防工业炸药、多晶硅电池等工业废水含有高浓度的硝态氮,基本没有氨氮,常采用活性污泥法进行废水处理,需要投加氨氮维持活性污泥的正常生长。陈海蓉等人 [7] 和杜丽平等人 [8] 以硝态氮为唯一氮源,研究了温度、C/N、pH等因素对污废水活性污泥反硝化的影响,发现温度和C/N对脱氮效果影响很大,这些因素和DNRA作用有直接关系,说明这些系统中存在DNRA作用,通过关键因素的调整,可以使一定比例的硝态氮发生DNRA作用产生氨,为反硝化等功能菌正常生长提供氮源,其余进行反硝化,保证在较高的脱氮效率条件下,节省氮源投加成本。从另一方面来讲,在城市污水脱氮工艺中,如果较多的 NO 3 不是通过反硝化从水体中去除,而是通过DNRA作用转化为 NH 4 + ,则会影响工艺的脱氮效率。因此,控制硝态氮进行DNRA作用的比例的非常重要。

2. 硝酸盐异化还原成铵作用的菌属

DNRA细菌包括专性厌氧、兼性厌氧、微嗜氧和好氧菌 [9] [10] [11] [12] ,这几种菌的电子传递链均不同,其中以兼性厌氧菌较为普遍,好氧菌以Bacillus较多,而Bacillus的一些种是反硝化菌 [13] 。Burgin和Hamilton证明异养菌和化能自养菌均有部分菌可以发生DNRA作用 [13] [14] ,黄灿等人发现,真菌也能发生DNRA作用 [15] 。Seenivasagan等人对硝态氮污染的地表水和土壤样品进行鉴别分析,指出77%的菌属具有DNRA作用,具有DNRA功能的细菌有肠杆菌科Enterobacteriaceae (DW-27),Bacillus sp. (DS-29),Bacillus sp. (DS-31),Bacillus sp. (DS-45),Bacillus sp. (DS-46),and Bacillus sp. (DS-47) [16] 等。Rajakumar等人 [17] 和Zhang等人 [18] 研究证明芽孢杆菌属是DNRA的优势菌,但芽孢杆菌中既有异养硝化菌,又有好氧反硝化菌 [19] 。Castro-Barros et al. (2017)发现Anammox自养菌中Candidatus “Brocadia fulgida”可以发生DNRA作用, NO 3 发生部分DNRA作用生成 NO 2 ,然后和 NH 4 + 发生Anammox作用,即利用DNRA-Anammox联合作用脱氮 [20] 。Candidatus “Brocadia fulgida”在污水厂非常常见,可以作为部分DNRA-anammox工艺的菌种。一些硫细菌具有DNRA功能 [21] [22] [23] ,化能无机自养细菌可以利用还原性硫化物作为电子供体,还原 NO 3 NH 4 + [24] ,DNRA作用是硫细菌的一种次生代谢。具有 NO 3 储存功能的细菌主要有Thioploca, Beggiatoa and Thiomargarit [25] [26] ,而这种功能菌可能是海洋沉积物中广泛存在的一个特色 [25] 。因此,DNRA细菌不但在缺氧环境中与反硝化作用竞争氮源,还能存在于好氧和微好氧环境中,影响硝化作用,从整体上影响着生物脱氮效果。

与能够进行反硝化作用的细菌一样,目前能够进行DNRA作用的细菌非常多,能够进行16rS寡核苷酸鉴定的种群较少,这给功能菌的鉴定带来了困难。研究者发现,反硝化细菌和DNRA细菌可以通过功能基因(nirs编码 NO 2 还原为NO的基因、nosZ编码N2O还原为N2的基因和nirfA编码 NO 2 还原为 NH 4 + 的基因)进行分子生物学鉴定。由于这种基因都是诱导性基因,在一些富集反硝化或DNRA细菌的批式反应器中,暂时改变环境条件,即使在利于DNRA或反硝化的环境条件下,也不能立即发生较高的反应速率 [27] [28] 。在批式试验中,虽然COD/N值很高,但是生长过程 NO 3 丰富,系统不会发生DNRA过程 [27] 。van den Berg等人(2015) [27] 认为这些主要是因为不缺乏作为电子受体的 NO 3 所引起的。本研究认为,由于反硝化及DNRA细菌的功能基因具有诱导性,在一个连续稳定的适宜环境中能够诱导其功能基因,观测到相应的反应;在批式试验中则不容易诱导出来,也不能被观测到。如果系统中原来就含有相当比例的DNRA及反硝化细菌,改变其环境和基质条件(C/N)、温度和pH等,则会使 NO 3 朝着有利于其微生物种群生存的环境条件方向转化 [11] [12] [29] 。

3. 硝酸盐异化还原成铵对系统脱氮的贡献

在DNRA作用对系统硝态氮转化途径贡献方面,许多学者也进行了深入的研究(见表1)。在国际方面,Huygens等人报道在氮源缺乏的热带雨林中,DNRA的速率是反硝化速率的三倍,甚至99%的氮通过DNRA途径还原 [30] 。Nizzoli等人发现在低洼的湖泊中有3%~15%的硝态氮发生DNRA作用,远低于海底底泥(80%~100%) [31] 。Chen等人发现,土壤含水率从30%增加到70%时,DNRA过程还原的硝态氮占总氮的比例由16.7%上升到92.9% [32] 。Mekala和Nambi报道,当土壤湿度达到80%,有机质丰富且还原性环境(C/N为5.53,ORP为−125 mV)时,DNRA过程较为剧烈 [33] 。Zhang等人研究发现在中碱性土壤中,高达98%的 NO 3 发生DNRA作用 [34] 。Winkler 等人的研究结果表明,Anammox细菌可以有效地在环境温度下竞争COD,可以在COD较低的情况下有效地去除硝态氮 [35] 。Chen等人研究了高山草地中DNRA作用,DNRA作用不产生N2O,且对硝态氮的转化量是反硝化作用的1/3 [36] 。Baggs等人报道DNRA作用也会产生N2O气体 [37] ,其产生量远低于反硝化过程。在国内方面,邓峰煜等人报道长江口DNRA过程占硝态氮总还原量的3%~45% [29] 。林啸等人研究了河口区氮循环,硝态氮消耗以反硝化为主,N2O的产生主要是反硝化和DNRA过程的贡献,而在长江口滨岸沉积物–水气界面N2O的排放可能主要是DNRA的贡献 [38] 。贺纪正和张丽梅报道DNRA-Anammox耦合作用导致的土壤中氮损失较多 [39] 。陈韬等人研究了生物滞留系统中 NO 3 转化途径,在有、无丹麦草的情况下,反硝化、DNRA、微生物 NO 3 同化和植物吸收分别占到总硝态氮量的32.7%、10.4%、24.2%、12.3%和21.6%、19.5%、19.4%、0% [40] 。以上研究均是生态系统中的DNRA过程,在污水生物处理方面,也有部分学者展开了研究。Scott等人报道在人工淡水湿地中,DNRA过程占硝态氮总量的5%~15% [41] ,而Jahangir等人发现在地下水下方的人工湿地里,DNRA和反硝化分别还原了40%~63%和14%~16%进水中的 NO 3 [3] 。Xie等人研究了厌氧酸化反应器中反硝化和DNRA对酸化作用的影响,发现当C/N从30增加到152时,通过反硝化作用去除的硝态氮从85.5%降到43.7%,而DNRA作用从14.5%增加到56.3%;当C/N为50时,DNRA

Table 1. Contribution of DNRA to the total NO 3 − reduction in various biological environments

表1. 不同生态环境条件下DNRA过程对系统 NO 3 还原的贡献

与反硝化速率的比例为0.6 [42] 。Zhang等人研究了阴极电位对DNRA作用的影响,在初始 NO 3 浓度为100 mg/L,阴极电位从−0.3降到−1.1 V时,DNRA进水中 NO 3 的转化率从10.76上升到35.06%,反硝化转化了进水 NO 3 总量的63.42降到44.33% [43] 。在张新艳等人研究表明在COD为1400 mg/L,硝态氮为250 mg/L时的活性污泥缺氧/好氧(A/O)系统和完全缺氧系统中,如图2所示,12%~13%的硝态氮通过DNRA作用生成氨氮,然后被其他细菌转化为细胞中的有机氮,84%~87%的硝态氮通过反硝化作用去除 [1] 。以上结果表明在较低的C/N (5.6)下,系统中12%~13%的硝态氮发生DNRA作用。如果进一步提高C/N或改变其他环境条件,DNRA对脱氮的影响可能会增加。因此活性污泥系统中DNRA作用并不能忽略,亟需进一步深入研究。

Tiedge等人报道细菌发生DNRA作用可以形成氨氮供细胞合成,提高环境pH值,去除发酵过程形成的有害物质 [44] 。而陶怡乐等人报道DNRA过程主要目的不是进一步将产生的氨转化为供自身利用的有机氮,而是产能和减少对细胞有毒害作用的 NO 3 / NO 2 [45] 。DNRA过程合成 NH 4 + 是否用于细胞合成取决于群体生存机制,如果微生物群体缺少生存所需氮源( NH 4 + ),即使环境因子不太适合,DNRA细菌也会优先合成NH4+供自身及其他细菌生长。

4. 硝态氮异化还原成铵作用的影响因素

长期以来,国内外学者对海洋、河流、湖泊等地表水以及土壤中DNRA作用的影响因素进行了大量的研究。研究者普遍认为DNRA与环境因素关系密切,C/N比、pH、亚硝态氮和硝态氮浓度、土壤中的含水率、有机物(脂肪酸)的种类和浓度、温度、Fe2+和硫化物浓度等均是影响反硝化和DNRA竞争的因素 [10] [36] [39] [45] [56] 。有机物和 NO 3 负荷以及温度是Annomox、反硝化和DNRA这三种过程竞争主要

Figure 2. Reduction pathways of NO 3 in denitrifying activated sludge

图2. 活性污泥反硝化系统中硝态氮转化途径

影响因素 [12] [57] ,调整C/N能够有效控制 NO 3 的主要转化途径在这三种反应中切换。

Anammox系统中C/N 为1.1时,发生部分DNRA,厌氧氨氧化细菌将 NO 3 转化为 NO 2 ;在C/N为0.6时,发生自养完全DNRA作用 [20] 。当 NH 4 + 存在时,会抑制DNRA作用将 NO 3 转化为 NH 4 + ,而是转化为 NO 2 。当无 NH 4 + 存在时,Anammox细菌会将 NO 3 转化为 NH 4 + ,即刻被利用 [58] 。(当COD/N为7.7时,90%的 NO 3 发生DNRA作用,而10%的 NO 3 发生反硝化作用。C/N较高, NO 3 浓度也较高时,占优势的仍然是反硝化作用。 NO 3 缺乏是DNRA作用占优势的制约因素 [27] 。 NO 3 缺乏成为制约系统种群生长的因素(即生长基质)时,DNRA转为优势菌,微生物竞争的是生存限制性基质 NO 3 及基质亲和力μmax/Ks [59] [60] 。

Schmidt等人发现,DNRA过程的产物氨氮浓度与土壤中C/N比、孔隙率和亚硝态氮浓度成正比,尤其是小分子有机物,有利于DNRA作用 [61] 。提高C/N、碳源丰富、增加小分子碳源有助于提高DNRA作用的发生势,DNRA速率明显加快 [62] [63] [64] 。Fazzolari等人报道碳源丰富(C/N大于4)有利于DNRA作用 [62] ,韦宗敏报道在C/N为2~10时,DNRA都可以发生 [13] 。

氮源条件也是影响DNRA作用的重要因素。氨氮存在条件下, NO 2 转化为 NH 4 + 要比 NO 3 转化为 NO 2 困难(得到较多的电子),因此反硝化异养菌会占优势 [27] [65] [66] [67] 。在生长氮源( NH 4 + )长期缺乏的环境,即使环境条件(电子受体、pH和温度)不利于DNRA过程,也会诱导部分 NO 3 发生DNRA作用 [1] ,这主要是微生物群体生存机制导致的,而且微生物会利用胞外环境中一切可以利用的 NH 4 + 合成细胞物质。当C/N较低时,氮源由 NO 3 代替 NO 2 时,Anammox细菌会对 NO 2 的竞争占相对优势 [27] [68] ,反之,反硝化对 NO 3 的竞争占优势 [20] 。以 NO 3 为最终电子受体时,DNRA作用处于优势;而以 NO 2 为最终电子受体时,反硝化处于优势;即使在发酵基质和硫化物存在条件下,低pH值环境或还原铜环境条件下,反硝化也占优势 [12] 。Kraft等人研究发现较低的污泥龄有利于反硝化作用,而较长的污泥龄则有利于DNRA作用。但是经过长时间的演变,反硝化作用重新成为优势。当进一步延长污泥龄,DNRA作用又重新成为优势 [10] 。这些研究者认为反硝化细菌与DNRA细菌竞争同样的基质,有相同的硝酸盐还原酶(NapAB),因此对于硝态氮具有相近的亲和力,世代时间不同导致两种细菌对亚硝态氮代谢稍有差异 [10] 。如图1所示,亚硝态氮如果进行反硝化作用只需3个电子,而进行DNRA作用则需要6个电子,在多种电子供体的环境中,亚硝态氮还原酶(Nir)受到电子供应瓶颈(基质亲和力μmax/Ks)的影响,这是DNRA速率较低的主要原因。

蒋然和李召旭认为高盐环境下的沉积物中更有利于DNRA作用 [69] 。Laverman等人(2007) [70] 和Giblin等人(2010) [71] 也证明,高盐环境有利于DNRA作用,但盐度对DNRA作用的影响的机理至今还不清楚。普遍的理论认为, SO 4 2 在高盐环境下经硫酸盐还原菌转化为低价态硫和硫化物。当硫化物为电子供体时,提高硫化物浓度或改变pH值,会降低 NO 2 产生速率,从而使DNRA作用优于反硝化作用。部分硫细菌和铁细菌利用硫化物和二价铁为DNRA过程提供电子,从而促进DNRA作用 [48] [49] [72] [73] [74] 。Brundet & Garcia-Gil (1996)报道,当悬浮液中 NO 3 和各种形式的硫化物比较充足的情况下, NH 4 + 产生的速率与 NO 3 和H2S消耗的速率一致 [75] ,导致 NO 3 浓度较低,且硫化物还能为DNRA作用提供电子供体,尽管DNRA的半饱和常数Km高于反硝化细菌,DNRA仍处于优势 [76] 。

Zhang等人利用电解方法产生电子,研究DNRA和反硝化的竞争,发现当提高阴极电压(即增加电子供体)时,芽孢杆菌的DNRA作用增强,反硝化作用减弱;增加硝态氮浓度,DNRA作用减弱,反硝化作用增强 [43] 。韦宗敏报道,碳源不同,DNRA作用所对应的最佳C/N不同(琥珀酸钠、柠檬酸钠和酒石酸钾钠为碳源时) [11] ,碳源的氧化状态与DNRA过程所适宜的C/N有关。

Matheson等人认为高C/N比导致系统DO及氧化还原电位(ORP)发生改变,而ORP是依靠曝气(N2/O2)来改变,因此ORP才是DNRA发生的根本因素 [77] 。还原性环境(多数是有机物较多,电子受体较少导致)、低DO、高C/N比,氮源缺乏、降低阴极电位、有硫化物及Fe2+存在,均是使基质中的电子供体增加,降低 NO 3 得电子的屏障,促进 NO 3 向电子转移更多的途径即DNRA作用发展。从另外一方面来说,即使有机物不甚丰富,电子供体增加(可以通过减少 NO 3 、降低阴极电位、添加硫化物及Fe2+,降低环境DO),可以有效地增加DNRA细菌竞争电子的能力,降低适宜DNRA过程的最低C/N值。

因此,影响DNRA与Anammox及反硝化竞争优劣的主要因素是电子供体、温度和pH。温度和pH均与酶最佳活性的环境条件相关。DNRA作用在亚热带河口、海洋区域占绝对优势 [47] [48] [49] [50] 。殷士学报道DNRA过程可以发生于pH 5.0~8.0之间的环境中 [13] ,而韦宗敏报道DNRA过程在pH 6.0~10.0都可以发生,在7.0时速率达到最高 [11] 。DNRA作用在30˚C达到最高,Anammox和反硝化过程的最佳温度分别是12˚C和24˚C [11] 。

5. 问题和展望

DNRA作用的研究多集中在生态环境中如河流、湖泊和海洋等地表水底泥和土壤及消化污泥中,在活性污泥脱氮系统及其他生物脱氮系统中研究较少。如A2O系统中的厌氧池和氧化沟工艺前段的厌氧选择池,有较高的有机物浓度及回流污泥带来的少量的 NO 3 ,具有较高的C/N;在电池、炸药等工业废水生物处理中,有较高的有机物及 NO 3 ,缺少细菌生长所需的氮源(氨氮)。因此,活性污泥系统中存在较多的适宜DNRA细菌生存的环境,DNRA过程对硝态氮的转化率能够达到12%以上,因此对于提高活性污泥的脱氮效率,DNRA作用不可忽略,亟待深入细致的研究。

1) 尽管关于DNRA在自然生态系统中报道较多,但这些影响因素对于活性污泥及其他生物脱氮系统中DNRA作用是否适用、因素之间交互机制、对DNRA、Anammox和反硝化细菌影响的根本原因还未探讨清楚,可以通过建立富集DNRA细菌的反应器,进一步研究氮的转化途径的控制策略,必要时通过生物添加来提高脱氮效率,降低氮源投加成本。

2) 尽管有关于DNRA污泥的富集培养、脱氮除碳性能和污泥组分等相关报道,但是DNRA污泥的性质研究还不全面,DNRA污泥微观结构、种群分布、DNRA细菌与其他细菌之间是否存在协同作用及微生物之间的信号传递、DNRA细菌在不同环境中是否还扮演其他功能菌等方面,亟待进一步研究。

3) DNRA过程在一些污废水处理单元,如人工湿地、污泥消化、厌氧酸化反应器及反硝化系统中有一些报道,DNRA细菌和反硝化细菌在活性污泥系统及其他生物脱氮系统中的种群丰度鲜有报道,DNRA作用在各种生物脱氮系统的贡献也不清楚,因此DNRA过程在活性污泥法各处理单元对脱氮的影响仍需要更多的研究。

基金项目

西安科技大学培育基金(2014039),西安科技大学博士启动金(2015QDJ009),国家自然科学基金(51509200)。

NOTES

*通讯作者。

参考文献

[1] 张新艳. 剩余污泥缺氧——好氧与单独好氧消化技术研究[D]: [博士学位论文]. 西安: 西安建筑科技大学, 2014.
[2] 郭瑜, 彭党聪, 张新艳, 等. 硝态氮为唯一氮源时异养微生物增长特性[J]. 环境工程学报, 2014, 8(3): 882-886.
[3] Jahangir, M.M.R., Fenton, O., Müller, C., Harrington, R., Johnston, P. and Richards, K.G. (2017) In Situ Denitrification and DNRA Rates in Ground-water Beneath an Integrated Constructed Wetland. Water Research, 111, 254-264.
https://doi.org/10.1016/j.watres.2017.01.015
[4] Kaspar, H.F., Tiedje, J.M. and Firestone, R.B. (1981) Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Digested Sludge. Canadian Journal of Microbiology, 27, 878-885.
https://doi.org/10.1139/m81-139
[5] Flippin, T.H., Moye, D. and Eckenfelder, W.W. (2002) Benefits of Using Nitrate as Nu-trient in Activated Sludge Treatment System in Proceedings of the Water Environment Federation, Industrial Wastes. Water Envi-ronment Federation.
[6] Darwin, A., Hussain, H., Griffiths, L., Grove, J., Sambongi, Y., Busby, S. and Cole, J. (1993) Regulation and Sequence of the Structural Gene for Cytochrome C552 from Escherichia coli: Not a Hexahaem but a 50kDa Tetrahaem Nitrite Reductase. Molecular Microbiology, 9, 1255-1265.
https://doi.org/10.1111/j.1365-2958.1993.tb01255.x
[7] 陈海蓉, 陆曦, 孙晓丹, 徐炎华. 多晶硅电池硝氮废水的处理工艺[J]. 南京工业大学学报(自然科学版), 2010, 32(3): 83-87.
[8] 杜丽平, 闻建平, 张涛, 吕箐. 反硝化处理硝氮废水的动力学研究 [J]. 化工环保, 2003, 23(1): 1-6.
[9] Sgouridis, F., Heppell, C.M., Wharton, G., Lansdown, K. and Trimmer, M. (2011) Denitrification and Dissimilatory Nitrate Reduction to Ammonium (DNRA) in a Temperate Re-Connected Floodplain. Water Research, 45, 4909-4922.
https://doi.org/10.1016/j.watres.2011.06.037
[10] Kraft, B., Tegetmeyer, H.E., Sharma, R., Klotz, M.G., Ferdelman, T.G., Hettich, R.L., Geelhoed, J.S. and Strous, M. (2014) Nitrogen Cycling the Environmental Controls That Govern the End Product of Bacteria Nitrate Respiration. Science, 345, 676-679.
https://doi.org/10.1126/science.1254070
[11] 韦宗敏. 微好氧环境中硝酸盐异化还原为铵的影响研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2012.
[12] 刘佳. 微生物好氧硝酸盐还原产铵研究[D]: [硕士学位论文]. 成都: 四川大学, 2007.
[13] 殷士学, 沈其荣. 缺氧土壤中硝态氮还原菌的生理生态特征[J]. 土壤学报, 2003, 40(4): 624-630.
[14] Burgin, A.J. and Hamilton, S.K. (2007) Have We Overemphasized the Role of Denitrification in Aquatic Ecosystems? A Review of Nitrate Removal Pathways. Frontiers in Ecology and the Environment, 5, 89-96.
https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
[15] 黄灿, 何清明, 邬红东, 等. 真菌异化硝酸盐还原机理的研究进展[J]. 微生物学通报, 2009, 36(7): 1052-1057.
[16] Seenivasagan, R., Rajakumar, S., Kasimani, R. and Ayyasamy, P.M. (2014) Screening of Assimilatory and Dissimilatory Denitrifying Microbes Isolated From Nitrate-Contaminated Water And Soil. Preparative Biochemistry and Biotechnology, 44, 586-597.
https://doi.org/10.1080/10826068.2013.835734
[17] Rajakumar, S., Ayyasamy, P.M., Shanthi, K., Thavamani, P., Velmurugan, P., Song, Y.C. and Lakshmanaperumalsamy, P. (2008) Nitrate Removal Efficiency of Bacterial Consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in Synthetic Nitrate-Rich Water. Journal of Ha-zardous Materials, 157, 553-563.
https://doi.org/10.1016/j.jhazmat.2008.01.020
[18] Zhang, W., Li, X., Liu, T. and Li, F. (2012) Enhanced Nitrate Reduction and Current Generation by Bacillus sp. in the Presence of Iron Oxides. Journal of Soils Sediments, 12, 354-365.
https://doi.org/10.1007/s11368-011-0460-2
[19] Jiao-Tong, S. (2009) Nitrogen Removal through Heterotrophic Nitrification and Aerobic Denitrification by Heterotrophic Nitrifier of Bacillus sp. LY. 3rd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2009, Beijing, 11-13 June 2009, 1-605.
[20] Castro-Barros, C.M., Jia, M., van Loosdrecht, M.C.M., Volcke, E.I.P. and Winkler, M.K.H (2017). Evaluating the Potential for Dissimilatory Nitrate Reduction by Anammox Bacteria for Municipal Wastewater Treatment. Bioresource Technology, 233, 363-372.
https://doi.org/10.1016/j.biortech.2017.02.063
[21] King, D. and Nedwell, D.B. (1985) The Influence of Nitrate Concentration upon the End-Products of Nitrate Dissimilation by Bacteria in Anaerobic Salt Marsh Sediment. FEMS Microbiology Ecology, 1, 23-28.
https://doi.org/10.1111/j.1574-6968.1985.tb01127.x
[22] Jørgensen, K.S. (1989) Annual Pattern of Denitrification and Nitrate Ammonification in Estuarine Sediment. Applied Environmental Microbiology, 55, 1841-1847.
[23] Rysgaard, S., Risgaard-Petersen, N. and Sloth, N.P. (1996) Nitrification, Denitrification, and Nitrate Ammonification in Sediments of Two Coastal Lagoons in Southern France. Hydrobiologia, 329, 133-141.
https://doi.org/10.1007/BF00034553
[24] Schedel, M. and Truper, H.G. (1980) Anaerobic Oxidation of Thiosulfate and Ele-mental Sulfur in Thiobacillus denitrificans. Archives of Microbiology, 124, 205-210.
https://doi.org/10.1007/BF00427728
[25] Schulz, H.Z. and Jørgensen, B.B. (2001) Big Bacterica. Annual Review of Microbi-ology, 55, 105-137.
https://doi.org/10.1146/annurev.micro.55.1.105
[26] Graco, M., Farias, L., Molina, V., Gutierrez, D. and Nielsen P.L. (2001) Massive Developments of Microbial Mats Following Phytoplankton Blooms in a Naturally Eutrophic Bay: Implication for Nitrogen Cycling. Limnology and Oceanography, 46, 821-832.
https://doi.org/10.4319/lo.2001.46.4.0821
[27] van den Berg, E.M., van Dongen, U., Abbas, B. and van Loosdrecht, M.C.M. (2015) Enrichment of DNRA Bacteria in a Continuous Culture. International Society for Microbial Ecology, 9, 2153-2161.
https://doi.org/10.1038/ismej.2015.26
[28] Behrendt, A., Tarre, S., Beliavski, M., Green, M., Klatt, J., De Beer, D., et al. (2014) Effect of High Electron Donor Supply on Dissimilatory Nitrate Reduction Pathways in a Bioreactor for Nitrate Removal. Bioresource Technology, 171, 291-297.
https://doi.org/10.1016/j.biortech.2014.08.073
[29] 邓峰煜. 长江口硝酸盐异化还原过程及其影响因素研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2016.
[30] Huygens, D., Rutting, T., Boeckx, P., Cleemput, O.V., Godoy, R. and Muller, C. (2007) Soil Nitrogen Conservation Mechanisms in a Pristine South Chilean Nothofagus Forest Ecosystem. Soil Biology and Biochemistry, 39, 2448-2458.
https://doi.org/10.1016/j.soilbio.2007.04.013
[31] Nizzoli, D., Carraro, E., Nigro, V. and Viaroli, P. (2010) Effect of Organic Enrichment and Thermal Regime on Denitrification and Dissimilatory Nitrate Reduction to Ammonium (DNRA) in Hypolimnetic Sediments of Two Lowland Lakes. Water Research, 44, 2715-2724.
https://doi.org/10.1016/j.watres.2010.02.002
[32] Chen, Z., Ding, W., Xu, Y., Müller, C., Rütting, T., Yu, H., Fan, J., Zhang J. and Zhu T. (2015) Importance of Heterotrophic Nitrification and Dissimilatory Nitrate Reduction to Ammonium in a Cropland Soil: Evidences from a 15N Tracing Study to Literature Synthesis. Soil Biology and Biochemistry, 91, 65-75.
https://doi.org/10.1016/j.soilbio.2015.08.026
[33] Mekala, C. and Nambi, M. (2017) Understanding the Hydrologic Control of N Cycle: Effect of Water Filled Pore on Heterogrophic Nitrification, Denitrification and Dissimilatory Nitrate Reduction to Ammonium Mechanisms in Unsaturated Soils. Journal of Contaminant Hydrology, 202, 11-22.
https://doi.org/10.1016/j.jconhyd.2017.04.005
[34] Zhang, J., Lan, T., Müller, C. and Cai, Z. (2015) Dissimilatory Nitrate Re-duction to Ammonium (DNRA) Plays an Important Role in Soil Nitrogen Conservation in Neutral and Alkaline But Not Acidic Rice Soil. Soils Sediments, 15, 523-531.
https://doi.org/10.1007/s11368-014-1037-7
[35] Winkler, M.K.H., Kleerebezem, R. and van Loosdrecht, M.C.M. (2012) Integration of Anammox into the Aerobic Granular Sludge Process for Main Stream Wastewater Treatment at Ambient Temperatures. Water Research, 46, 136-144.
https://doi.org/10.1016/j.watres.2011.10.034
[36] Chen, Z., Wang, C., Gschwendtner, S., Willibald, G., Unteregelsbacher, S., Lu, H., Kolar, A., Schloter, M., Butterbach-Bahl, K. and Dannenmann, M. (2015) Relationships between Denitrification Gene Expression, Dissimilatory Nitrate Reduction to Ammonium and Nitrous Oxide and Dinitrogen Production in Montane Grassland Soils. Soil Biology and Biochemistry, 87, 67-77.
https://doi.org/10.1016/j.soilbio.2015.03.030
[37] Baggs, E.M. (2011) Soil Microbial Sources of Nitrous Oxide: Recent Ad-vances in Knowledge, Emerging Challenges and Future Direction. Current Opinion in Environmental Sustainability, 3, 321-327.
https://doi.org/10.1016/j.cosust.2011.08.011
[38] 林啸. 典型河口区氮循环过程和影响机制研究[D]: [博士学位论文]. 上海: 华东师范大学, 2011.
[39] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1): 98-108.
[40] 陈韬, 邹子介, 李剑沣. 生物滞留系统中N15O3-的迁移转化及丹麦草对此过程的影响研究[J]. 环境工程, 2017, 35(4): 60-64.
[41] Scott, J.T., McCarthy, M.J., Gardner, W.S. and Doyle, R.D. (2008) Denitrification, Dissimilatory Nitrate Reduction to Ammonium, and Nitrogen Fixation along a Nitrate Concentration Gradient in a Created Freshwater Wetland. Biogeochemistry, 87, 99-111.
https://doi.org/10.1007/s10533-007-9171-6
[42] Xie, L., Ji, C., Wang, R. and Zhou, Q. (2015) Nitrate Reduction Pathway in an Anaerobic Acidification Reactor and Its Effect on Acid Fermentation. Journal of Bioscience and Bioengineering, 119, 95-100.
https://doi.org/10.1016/j.jbiosc.2014.05.027
[43] Zhang, W., Zhang, Y., Su, W., Jiang, Y., Su, M., Gao, P. and Li, D. (2014) Effects of Cathode Potentials and Nitrate Concentrations on Dissimilatory Nitrate Reductions by Pseudomonas alcaliphila in Bio-electrochemical Systems. Journal of Environmental Sciences, 26, 885-891.
https://doi.org/10.1016/S1001-0742(13)60460-X
[44] Tiedje, J.M. (1988) Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. John Wiley and Sons, New York, 210-212.
[45] 陶怡乐, 温东辉. 细菌硝酸盐异化还原成铵过程及其在河口生态系统中潜在地位与影响[J]. 微生物学通报, 2016, 43(1): 172-181.
[46] Karlson, K., Hulth, S., Ringdahl, K. and Ro-senberg, R. (2005) Experimental Recolonisation of Baltic Sea Reduced Sediments: Survival of Benthic Macrofauna and Effects on Nutrient Cycling. Marine Ecology Progress Series, 294, 35-49.
https://doi.org/10.3354/meps294035
[47] Trimmer, M. and Nicholls, J.C. (2009) Production of Nitrogen Gas via Anammox and Denitrification in Intact Sediment Cores along a Continental Shelf to Slope Transect in the North Atlantic. Limnology and Oceanography, 54, 577-589.
https://doi.org/10.4319/lo.2009.54.2.0577
[48] Gardner, W.S., Mccarthy, M.J., An, S., Sobolev, D., Sell, K.S. and Brock, D. (2006) Nitrogen Fixation and Dissimilatory Nitrate Reduction to Ammonium (DNRA) Support Nitrogen in Texas Estuaries. Limnology and Oceanography, 51, 558-568.
https://doi.org/10.4319/lo.2006.51.1_part_2.0558
[49] Hou, L., Liu, M., Carini, S.A. and Gardner, W.S. (2012) Transformation and Fate of Nitrate near the Sediment—Water Interface of Copano Bay. Continental Shelf Research, 35, 86-94.
https://doi.org/10.1016/j.csr.2012.01.004
[50] Fernandes, S.O., Bonin, P.C., Michotey, V.D., Garcia, N. and Lokabharathi, P. (2012) Nitrogen Limited Mangrove Ecosystems Conserve N through Dissimilatory Nitrate Reduction to Am-monium. Scientific Reports, 2, Article Number: 419.
https://doi.org/10.1038/srep00419
[51] Molnar, N., Welsh, D.T., Marchand, C., Deborde, J. and Meziane, T. (2013) Impacts of Shrimp Farm Effluent on Water Quality, Benthic Metabolism and N-Dynamics in a Mangrove Forest (New Caledonia). Estuarine, Coastal and Shelf Science, 117, 12-21.
https://doi.org/10.1016/j.ecss.2012.07.012
[52] Song, G.D., Liu, S.M., Marchant, H., Kuypers, M.M.M. and Lavik, G. (2013) Anammox, Denitrification and Dissimilatory Nitrate Reduction to Ammonium in the East China Sea Sediment. Biogeosciences, 10, 6851-6864.
https://doi.org/10.5194/bg-10-6851-2013
[53] Gilbert, F., Souchu, P., Bianchi, M. and Bonin, P. (1997) Influence of Shellfish Farming Activities on Nitrification, Nitrate Reduction to Ammonium and Denitrification at the Water-Sediment Interface of the Thau Lagoon, France. Marine Ecology Progress Series, 151, 143-153.
https://doi.org/10.3354/meps151143
[54] Dong, L.F., Smith, C.J., Papaspyrou, S., Stott, A., Osborn, A.M. and Nedwell, D.B. (2009) Changes in Benthic Denitrification, Nitrate Ammonification, and Anammox Process Rates and Nitrate and Nitrite Reductase Gene Abundances along an Estuarine Nutrient Gradient (the Colne Estuary, United Kingdom). Applied and Environmental Microbiology, 75, 3171-3179.
https://doi.org/10.1128/AEM.02511-08
[55] Dong, L.F., Sobey, M.N., Smith, C.J., Rusmana, I., Phillips, W., Stott, A., Osborn, A.M. and Nedwell, D.B. (2011) Dissimilatory Reduction of Nitrate to Ammonium, Not Denitrification or Anammox, Dominates Benthic Nitrate Reduction in Tropical Estuaries. Limnology and Oceanography, 56, 279-291.
https://doi.org/10.4319/lo.2011.56.1.0279
[56] 胡晓婷, 程吕, 林贤彪, 等. 沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例[J]. 中国环境科学, 2016, 36(9): 2624-2632.
[57] Hardisona, A.K., Algarb, C.K., Giblinb, A.E. and Rich, J.J. (2015) Influence of Organic Carbon and Nitrate Loading on Partitioning between Dissimilatory Nitrate Reduction to Ammonium (DNRA) and N2 Production. Geochimica et Cosmochimica Acta, 164, 146-160.
https://doi.org/10.1016/j.gca.2015.04.049
[58] Algar, C. and Vallino, J. (2014) Predicting Microbial Nitrate Reduction Pathways in Coastal Sediments. Aquatic Microbial Ecology, 71, 223-238.
https://doi.org/10.3354/ame01678
[59] Healey, F. (1980) Slope of the Monod Equation as an Indicator of Advantage in Nutrient Competition. Microbial Ecology, 5, 281-286.
https://doi.org/10.1007/BF02020335
[60] Kuenen, J.G. and Johnson, O.J. (2009) Continuous Cultures (Chemostats). In: Schaechter, M., Ed., Encyclopedia of Microbiology, Elsevier, Oxford, 130-147.
https://doi.org/10.1016/B978-012373944-5.00112-7
[61] Schmidt, C.S., Richardson, D.J. and Baggs, E.M. (2011) Constraining the Conditions Conductive to Dissimilatory Nitrate Reduction to Ammonium in Temperate Arable Soils. Soil Biology & Biochemistry, 43, 1607-1611.
https://doi.org/10.1016/j.soilbio.2011.02.015
[62] Fazzolari, E., Nicolardeot, B. and Germon, J.C. (1998) Simultaneous Effects of Increasing Levels of Glucose and Oxygen Partial Pressure on Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Repacked Soil Cores. European Journal of Soil Biology, 34, 47-52.
https://doi.org/10.1016/S1164-5563(99)80006-5
[63] Wan, Y., Ju, X., Ingwersen, J., Schwarz, U., Stange, C.F., Zhang, F.and Streck, T. (2009) Gross Nitrogen Transformations and Related Nitrous Oxide Emissions in an Intensively Used Calcareous Soil. Soil Science Society of America Journal, 73, 102-112.
https://doi.org/10.2136/sssaj2007.0419
[64] Rütting, T., Boeckx, P., Müller, C. and Klemedtsson, L. (2011) Assessment of the Importance of Dissimilatory Nitrate Reduction to Ammonium for the Terrestrial Nitrogen Cycle. Biogeosciences, 8, 1779-1791.
https://doi.org/10.5194/bg-8-1779-2011
[65] Kartal, B., Kuypers, M.M.M., Lavik, G., Schalk, J., den Camp, H.J.M.O., Jetten, M.S.M. and Strous, M. (2007) Anammox Bacteria Disguised as Denitrifiers: Nitrate Reduction to Dinitrogen Gas via Nitrite and Ammonium. Environmental Microbiology, 9, 635-642.
https://doi.org/10.1111/j.1462-2920.2006.01183.x
[66] Kartal, B., Rattray, J., van Niftrik, L.A., van de Vossenberg, J., Schmid, M.C., Webb, R.I., Schouten, S., Fuerst, J.A., Damste, J.S.S., Jetten, M.S.M. and Strous, M. (2007) Candidatus “Anammoxoglobus propionicus” a New Propionate Oxidizing Species of Anaerobic Ammonium Oxidizing Bacteria. Systematic and Applied Microbiology, 30, 39-49.
https://doi.org/10.1016/j.syapm.2006.03.004
[67] Kartal, B., van Niftrik, L., Rattray, J., van de Vossenberg, J.L.C.M., Schmid, M.C., Damste, J.S.S., Jetten, M.S.M. and Strous, M. (2008) Candidatus ‘‘Brocadia fulgida”: An Autofluorescent Anaerobic Ammo-nium Oxidizing Bacterium. FEMS Microbiology Ecology, 63, 46-55.
https://doi.org/10.1111/j.1574-6941.2007.00408.x
[68] Mozumder, M.S.I., Picioreanu, C., van Loosdrecht, M.C.M. and Volcke, E.I.P. (2014) Effect of Heterotrophic Growth on Autotrophic Nitrogen Removal in a Granular Sludge Reactor. Environmental Tech-nology, 35, 1027-1037.
https://doi.org/10.1080/09593330.2013.859711
[69] 蒋然, 李召旭. 典型河口区硝态氮短程还原成铵的活性氮积累途径研究进展[J]. 水资源保护, 2014, 30(4): 10-13.
[70] Laverman, A.M, Canavan, R.W, Slomp, C.P, et al. (2007) Potential Nitrate Re-moval in a Coastal Freshwater Sediment (Haringvliet Lake, the Netherlands) and Response to Salinization. Water Research, 41, 3061-3068.
https://doi.org/10.1016/j.watres.2007.04.002
[71] Giblin, A.E., Weston, N.B., Banta, G.T., et al. (2010) The Effects of Salinity on Nitrogen Losses from an Oligohaline Estuarine Sediment. Estuaries and Coasts, 33, 1054-1068.
https://doi.org/10.1007/s12237-010-9280-7
[72] Weber, K.A., Picardal, F.W. and Roden, E.E. (2001) Microbially Catalyzed Nitrate-Dependent Oxidation of Biogenic Solid-Phase Fe(II) Compounds. Environmental Science and Technology, 35, 1644-1650.
https://doi.org/10.1021/es0016598
[73] Wong, B. and Lee, D. (2011) Sulfide Enhances Methanogensis in Nitrate-Containing Methanogenic Cultures [J]. Bioresource Technology, 102, 2427-2432.
https://doi.org/10.1016/j.biortech.2010.10.121
[74] Lu, W., Zhang, H. and Shi, W. (2013) Dissimilatory Nitrate Reduction to Ammonium in an Anaerobic Agricultural Soil as Affected by Glucose and Free Sulfide. European Journal of Soil Biology, 58, 98-104.
https://doi.org/10.1016/j.ejsobi.2013.07.003
[75] Roberts, K.L., Kessler, A.J., Grace, M.R. and Cook, P.L.M. (2014) Increased Rates of Dissimilatory Nitrate Reduction to Ammonium (DNRA) under Oxic Conditions in a Periodically Hypoxic Estuary. Geochi-mica et Cosmochimica Acta, 133, 313-324.
https://doi.org/10.1016/j.gca.2014.02.042
[76] Brunet, R.C. and Garcia-Gil, L.J. (1996) Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonia in Anaerobic Freshwater Sediment. FEMS Microbiology Ecology, 21, 131-138.
https://doi.org/10.1111/j.1574-6941.1996.tb00340.x
[77] Matheson, F., Nguyen, M., Cooper, A., Burt, T. and Bull, D. (2002) Fate of 15N-Nitrate in Unplanted, Planted and Harvested Enrichment of DNRA Bacteria in Continuous Culture. Ecological Engineering, 19, 249-264.
https://doi.org/10.1016/S0925-8574(02)00093-9