周期SiC结构的热辐射研究进展
Thermal Radiation Research of Silicon Carbide with Periodic Structure
DOI: 10.12677/MP.2018.83014, PDF, HTML, XML, 下载: 1,468  浏览: 2,872  国家自然科学基金支持
作者: 宋姝漩*, 陈智娇, 姚 远, 俞俊生:北京邮电大学电子工程学院,北京;亓丽梅:北京邮电大学电子工程学院,北京;毫米波国家重点实验室,江苏 南京
关键词: SiC热辐射相干性Silicon Carbide Thermal Radiation Coherence
摘要: 具有周期结构排列的SiC在红外波段表现出良好的热辐射性能,在热辐射源方面有重要的应用价值。本文综述了一维和二维SiC热辐射结构的研究现状,并探讨了SiC周期结构在热辐射源方面的发展趋势。
Abstract: The silicon carbide with periodic structures shows good thermal radiation performance in the infrared band, and has important applications in thermal radiation source. This paper reviews the research status of one-dimensional and two-dimensional SiC thermal radiation structures and discusses the development trend based on SiC periodic structures.
文章引用:宋姝漩, 亓丽梅, 陈智娇, 姚远, 俞俊生. 周期SiC结构的热辐射研究进展[J]. 现代物理, 2018, 8(3): 115-126. https://doi.org/10.12677/MP.2018.83014

1. 引言

由于电子的热运动而产生的辐射称为热辐射,只要物体的温度高于“绝对零度”,热能总是不断地转变为辐射能,向外发出热辐射。理论上说,物体热辐射的电磁波波长可以从零变化到正无穷,在实际应用中,把波长位于0.38~100 mm之间的电磁波辐射称为热辐射 [1] 。碳化硅(SiC)材料是自第1代元素半导体材料(Si)和第2代化合物半导体材料(GaAs, GaP, InP等)之后发展起来的第3代半导体材料。SiC材料具有带隙宽度可调、高硬度、高临界击穿电场、高热导率及化学稳定性好等特点 [2] [3] [4] [5] [6] 。1997年法国学者Greffet在对由极性材料SiC制成的微光栅热辐射特性进行研究时,发现热辐射呈现明显的干涉特征 [7] 。2000年,Shchegrov在离开表面不同的高度下对SiC样品的热辐射进行了实验测量,由于倏逝波的存在,在离表面0.1 mm处热辐射急剧增强 [8] 。Biehs等人 [9] [10] 考虑了基于SiC-SiO2多层膜的HMM最上层SiC薄膜支持的表面声子极化波的贡献。SiC周期性结构能在窄带的红外波段范围内产生相干热辐射,形成目前比较紧缺的红外热辐射源。因此,基于SiC周期结构的热辐射特性的研究,具有重要的理论价值和应用前景。

2. SiC的热辐射

2.1. 一维结构的热辐射研究现状

1997年,Gall J. L.等 [7] 研究了SiC一维光栅在偏振方向上的反射率,通过实际测量发现,SiC光栅结构与平面结构相比在反射率上有显著变化,如图1(a)和图1(b)所示,并得到了SiC光栅结构P偏振和S偏振的反射率,实验与理论结果相差不大。

2002年,Greffet J. J. [5] 发现一维SiC光栅结构形成的大距离(多个波长)上相干和定向辐射的热红外源,与平坦表面的辐射率相比,辐射源的辐射率增加了20倍。研究发现,由于表面声子极化激元的激发,在近红外波段实现全吸收特性 [11] [12],如图2所示,为后来该方面的研究奠定了基础。2004年,Marquier F. [13] 等在Greffet J. J.基础上研究了利用SiC表面波的热激发来提高模型在各个方向上的发射率,实验和仿真结果表明热辐射现象只存在于p偏振。随后在2009年,Han S. E. [14] 进一步研究了倾斜角对s偏振和p偏振的热辐射的影响,如图3所示,该热辐射只存在p极化波的某一特定角度,并且发现与平坦表面的相干长度相比,线性光栅和表面极化激元之间的动量交换可以明显减小热辐射的相干长度。

2005年,Lee B. J.等 [15] 将SiC涂覆在一维光子晶体上表面来构建相干热源,发现在横向电波(TE)和横向磁波(TM)的红外波段,都表现出较强的热辐射现象,热辐射位置随角度不断发生改变。对应的结构和热辐射随角度变化如图4所示,说明SiC一维光子晶体热辐射具有角度敏感性。

2010年,Jérémie Dré [16] 设计出由Ge和SiC组成的双层结构(如图5所示),发现当锗厚度为700 nm,碳化硅厚度为200 nm时,该双层结构可在两个极化下同时实现窄带、不随入射角变化的热辐射现象。

(a) (b)

Figure 1. (a) Surface profile of the SiC grating measured by atomic force microscopy; (b) spectral reflectivity of the grating and of the plane surface for p polarization at near normal incidence

图1. (a) 原子力显微镜下SiC光栅的表面形状;(b) 垂直入射下平面表面和光栅表面p极化的反射率对比

(a) (b)

Figure 2. (a) Structure diagram of SiC grating; (b) comparison of theoretical and experimental absorption at 30˚ and 45˚ incident angles

图2. (a) SiC光栅结构示意图;(b) 该结构在30˚和45˚入射角下理论与实验的吸收比较

2015年,Giuseppe D’Aguanno [17] 研究了嵌入在ZnSe主体介质中由SiC制成的亚波长颗粒周期性多层阵列的热发射特性,如图6所示。由于单个粒子的固有声子极化激元共振与由不同粒子阵列热发射场之间的独特相互作用,在10.6~11 um之间产生多波峰的相干热辐射现象。

2015年,Wang W. J. [18] 等提出了由碳化硅光栅和一维光子晶体结构构建的热辐射结构。如图7所示,通过调整结构的几何参数可以有效地实现热发射/吸收的光谱和方向控制。若仅在模型顶部或底部加单层SiC薄膜,将会在同一频率段出现单个吸收峰;若在顶部和底部均加SiC薄膜形成三明治结构,则

Figure 3. Angular dependence of the absorptance of a SiC linear grating for s and p polarizations

图3. 倾斜角对p偏振和s偏振吸收的影响

(a) (b)

Figure 4. (a) a layer of SiC structure coated on the ZnSe and KBr one-dimensional periodic structures; (b) the emissivity of the TE wave and the TM wave at different angles

图4. (a) 在ZnSe和KBr一维周期结构上涂覆一层SiC的结构示意图;(b) 该结构TE波和TM波在不同角度下的辐射率

(a) (b)

Figure 5. (a) two-layer structure of one dimension; (b) emissivity spectrum of TE and TM wave

图5. (a) 一维双层结构;(b) TE、TM光谱图

(a) (b)

Figure 6. (a) Finite multilayer structure made of N layers of SiC microparticles separated by a distance of d and embedded in a ZnSe background medium; (b) comparison of spectral emissivity at different layers wavelengths

图6. (a) 嵌入在ZnSe主介质中间距为d的碳化硅亚波长粒子的周期性多层阵列;(b) 此结构在不同层数的波长下光谱发射功率对比

(a) (b)

Figure 7. (a) Schematic representation of the geometry considered; (b) spectral-normal emissivity with a SiC film of thickness d = 1.25 um on the top (solid), a SiC film of thickness d = 7 um at the bottom (dash), and two SiC films on both sides simultaneously (dot)

图7. (a) 结构示意图;(b) 实线为模型顶部加厚度d为1.25微米的SiC薄膜的辐射率,虚线为模型底部加厚度d为7微米的SiC薄膜的辐射率,点线为顶部和底部都加上SiC薄膜的辐射率

会出现双峰吸收,从而理论上验证了双峰存在的可能性。

2016年,Chalabi H.等 [19] 提出在SiC表面构造一定的的纳米结构可以把预先选定的光谱范围的热辐射聚焦到离表面一个明确的高度上,非周期对称模式的结构如图8所示。

2012年和2013年,Biehs S. A.等 [9] 考虑了基于SiC-SiO2多层膜的热辐射现象,Guo Y.等 [20] 提出具有双曲线色散的超一维结构可形成宽带热辐射现象。Biehs S. A.等 [9] 考虑了基于SiC-SiO2多层膜的HMM最上层SiC薄膜支持的表面声子极化波的贡献(如图9所示),并分析了布洛赫模式和表面声子极化子对近场热传输的贡献。

2014年,Ito K. [21] 等通过谐振光栅和SiC板之间的消逝波的耦合方案来获得强烈的光谱和角度辐射。如图10所示,指出当光栅波导模式的横向波束与SiC板的表面声子极化的横向波束一致时,入射光通过消逝波的耦合被SiC平板吸收。

2.2. 二维结构的热辐射研究现状

2008年,Dahan N.等 [22] 提出了SiC谐振腔耦合结构的热辐射相干控制,如图11所示,介绍了基于SiC的各向异性结构的相干热辐射,由于耦合谐振腔表面声子极化激元的激励使得相干性得到增强。实验证明通过利用周期性耦合的谐振腔,可以在激发源不可用的光谱频带中设计出非常高的相干热源,而且不受离域表面波强加的相干性的限制。

2012年,Arnold C.等 [23] 实验证实了二维SiC光栅的相干红外热辐射。其结构和对应的相关曲线如图12所示,由于二维SiC光栅表面上的表面声子极化激元的热激发,可在p偏振和s偏振同时获得高的热辐射。研究发现只要满足相位和极化匹配条件,二维光栅的表面波与传播波之间的耦合是有效的。大波矢的表面波的热激发以及它们与二维光栅的耦合能够获得发射率接近于1的高度各向同性的热源 [24] 。

Figure 8. Schematic representation of the geometry considered

图8. 几何结构示意图

(a) (b)

Figure 9. (a) Sketch of the geometry of two SiC-SiO2 multilayer structures separated by a separation distance d; (b) distribution of transmission coefficient between SiC-SiO2 multiayer structures at d = 100 nm

图9. 相距为d的两SiC-SiO2多层膜结构的(a)结构示意图和(b)能量传输系数的模式分布,d = 100 nm

(a) (a) (b)

Figure 10. (a) Resonance grating and SiC plate structure; (b) absorption spectrum

图10. (a)谐振光栅和SiC板结构;(b)吸收光谱图

(a) (b)

Figure 11. (a) SEM image of CRC structure upon SiC; (b) caculated and experimental directional emissivity at the peak frequency

图11. (a) SiC结构的SEM图;(b) 理论和实验得到的在峰值频率处的定向发射率

(a) (b)

Figure 12. (a) SEM image of CRC structure upon SiC; (b) measurement (dots) and calculation (dashed line) of the emissivity spectrum in the direction normal to the surface

图12. (a) SiC结构的SEM图;(b) 该二维结构在垂直于表面的方向上实验和理论计算发射率谱

2011年,Biehs S. A. [25] 等人通过利用有效介质理论表征二维孔状阵列结构的等效介电函数,并给出了具有孔状阵列两SiC介质平板之间的近场热传输增强特性,其系统结构如图13所示。由图可见,在间距为10 nm时,两个SiC体的热通量是两个黑体热通量的大约1000倍,这是因为内部全反射受挫以及表面声子极化子的耦合,大于λ的距离后,热通量由基尔霍夫-普朗克定律决定,并受黑体值的限制。对于小于100 nm或大于10 um的间距,热通量由p偏振决定,而距离在两者之间的由s偏振来决定。

2012年,Biehs S. A. [26] 等人运用有效介质理论描述了基于SiC纳米线阵列的近场热传输特性,如图14所示。研究结果表明,材料中双曲模式的贡献使得近场热传输得到增强,在特定的SiC材料的填充因子下,近场传热系数要高于体块的SiC材料,从而说明在SiC内添加其他材料能有效改变传热系数。

2016年,Christopher R. [27] 构造了一个二维SiC柱状结构,如图15所示。作者研究了其表面等离子激元和本征模特性,分析了观察到的局部和表面声子极化激元之间明显的光谱,证明它们之间可能存在相干的可逆能量交换。

(a) (b)

Figure 13. (a) Sketch of two porous SiC slabs with different temperatures separated by a vacuum gap, (b) heat flux between two porous SiC slabs over distance normalized black bodies

图13. 具有孔状阵列的两SiC介质平板(a)结构示意图和(b)黑体辐射归一化的热传输通量随间距的变化

(a) (b)

Figure 14. (a) Sketch of a hyperbolic material consisting of a periodical array of nanowires; (b) heat transfer coefficient varies with separation distance d for two hyperbolic materials normalized to the value for two bulk SiC media

图14. 基于纳米线阵列的HMM的(a)结构示意图和(b)采用体块SiC材料情况归一化传热系数随换热间距d的变化

Figure 15. Schematic diagram and emissivity spectrum

图15. 结构和光谱示意图

3. 总结与展望

热辐射源于局部热平衡中物体自发发射的完全不相关进程,一些热源可以在近场中表现出较高的空间相干性。这些空间相干性可以用来设计在相同波长上与激光器相当的具有角度发散的高定向源,也可以用来显著增强或抑制热辐射。现代热辐射器可以获得不同于传统热源广谱发射的窄带热发射 [28] - [40] 。

利用周期结构控制热辐射是近年的研究热点,且碳化硅(SiC)材料是自第1代元素半导体材料(Si)和第2代化合物半导体材料(GaAs, GaP, InP 等)之后发展起来的第3代半导体材料。SiC材料具有带隙宽度可调、高硬度、高临界击穿电场、高热导率及化学稳定性好等特点。SiC薄膜的热辐射又具有很好的干涉特征,并且SiC在修改材料表面辐射特性,近场辐射强化换热以及红外光电器件的开发等方面获得较好应用 [41] - [49] 。

综上所述,由于SiC周期性结构能在窄带范围内产生相干热辐射现象,从而引起了人们的广泛关注,并从实验均证实了一维和二维结构的热辐射现象。

目前为满足需求,设计多边带或和定向角度热辐射是未来发展的两个主要发展方向。设计多边带SiC热辐射结构,在一种极化方式下可以出现多个辐射峰值,能够满足多波源热辐射源需求;设计定向辐射的SiC热辐射结构,使其仅在某个角度有一个热辐射峰,而在其他角度不存在辐射峰,能够确保得到的热辐射源能量集中,辐射功率更高。

SiC一维和二维除了在光子晶体结构上有差异外,其热辐射也表现出了不同的吸收特性,随着SiC热辐射研究深入和3D打印技术的不断成熟,对于SiC三维周期结构的理论和实验的研究也将成为可能。

基金项目

国家自然科学基金(No 61107030),毫米波国家重点实验室(No. K201703)和中央高校基本科研业务费专项资金项目。

参考文献

[1] 杨世铭, 陶文铨. 传热学[M]. 第三版. 北京: 高等教育出版社, 1998: 239-240.
[2] 韩茂华, 梁新刚, 黄勇. SiC薄膜的热辐射特性研究[J]. 科学通报, 2005, 50(6): 588-591
[3] Basu, S., Lee, B.J. and Zhang, Z.M. (2010) Near-Field Radiation Calculated with an Improved Dielectric Function Model for Doped Silicon. Journal of Heat Transfer-Transactions of the ASME, 132, 023302.
[4] Mulet, J.P., Joulain, K., Carminati, R. and Greffet, J.J. (2002) Enhanced Radiative Heat Transfer at Nanometric Distances. Microscale Thermophysical Engineering, 6, 209-222.
https://doi.org/10.1080/10893950290053321
[5] Greffet, J.J., Carminati, R., Joulain, K., Mulet, J.P., Mainguy, S.P. and Chen, Y. (2002) Coherent Emission of Light by Thermal Sources. Nature, 416, 61-64.
https://doi.org/10.1038/416061a
[6] Pryamikov, A., Joulain, K., Ben-Abdallah, P. and Drevillon, J. (2011) Role of Confined Bloch Waves in the near Field Heat Transfer between Two Photonic Crystals. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 1314-1322.
https://doi.org/10.1016/j.jqsrt.2011.01.008
[7] Gall, J.L., Oliver, M. and Greffet, J.J. (1997) Experimental and Theoretical Study of Reflection and Coherent Thermal Emission by a SiC Grating Supporting a Surface-Phonon Polariton. Physical Review B, 55, 10105-10114.
https://doi.org/10.1103/PhysRevB.55.10105
[8] Shchegrov, A.V., Joulain, K., Carminati, R., et al. (2000) Near-Field Spectral Effects Due to Electromagnetic Surface Excitations. Physical Review Letters, 85, 1548-1551.
[9] Biehs, S.A., Tschikin, M., Messina, R. and Ben-Abdallah, P. (2013) Super-Planckian Near-Field Thermal Emission with Phonon-Polaritonic Hyperbolic Metamaterials. Applied Physics Letters, 102, 131106.
https://doi.org/10.1063/1.4800233
[10] Lang, S., Tschikin, M., Biehs, S.A., Petrov, A.Y. and Eich, M. (2014) Large Penetration Depth of Near-Field Heat Flux in Hyperbolic Media. Applied Physics Letters, 104, 121903.
https://doi.org/10.1063/1.4869490
[11] Yariv, A., Xu, Y., Lee, R.K. and Scherer, A. (1999) Coupledresonator Optical Waveguide: A Proposal and Analysis. Optics Letters, 24, 711.
https://doi.org/10.1364/OL.24.000711
[12] Kim, M.K., Sim, H. and Yoon, S.J. (2015) Squeezing Photons into a Point-Like Space. Nano Letters, 15, 4102.
https://doi.org/10.1021/acs.nanolett.5b01204
[13] Marquier, F., Joulain, K., Mulet, J.P., Carminati, R. and Greffet, J.J. (2004) Coherent Spontaneous Emission of Light by Thermal Sources. Physical Review B, 69, 155412.
https://doi.org/10.1103/PhysRevB.69.155412
[14] Han, S.E. (2009) Theory of Thermal Emission from Periodic Structures. Physical Review B, 80, 155108.
https://doi.org/10.1103/PhysRevB.80.155108
[15] Lee, B.J., Fu, C.J. and Zhang, Z.M. (2005) Coherent Thermal Emission from One-Dimensional Photonic Crystals. Physical Review Letters, 87, 071904.
https://doi.org/10.1063/1.2010613
[16] Drévillon, J., Joulain, K. and Ben-Abdallah, P. (2011) Coherent Thermal Emission in Midinfrared from a Bilayer Structure. Journal of Quantitative Spectroscopy & Radiative Transfer, 112, 1156-1161.
https://doi.org/10.1016/j.jqsrt.2010.08.031
[17] D’Aguanno, G. (2015) Coherent Thermal Emission near 10.6 μm Mediated by Localized Phonon-Polariton Modes in Microparticle Arrays. Applied Physics Letters, 106, Article ID: 031110.
https://doi.org/10.1063/1.4906357
[18] Wang, W.J., Zhao, Z.G., Zhao, Y., Zhou, H.J. and Fu, C.J. (2015) Design and Optimization of a SiC Thermal Emitter/Absorber Composed of Periodic Microstructures Based on a Non-Linear Method. Chinese Physics B, 24, Article ID: 094213.
https://doi.org/10.1088/1674-1056/24/9/094213
[19] Chalabi, H., Alu, A. and Mark, L. (2016) Brongersma1. Focused Thermal Emission from a Nanostructured SiC Surface. Physical Review B, 94, Article ID: 094307.
https://doi.org/10.1103/PhysRevB.94.094307
[20] Yu, G. and Cristian, L. (2012) Cortes and Molesky S. Broad-band Super-Planckian Thermal Emission from Hyperbolic Metamaterials. Applied Physics Letters, 101, Article ID: 131106.
https://doi.org/10.1063/1.4754616
[21] Ito, K., Matsui, T. and Iizuka, H. (2014) Thermal Emission Con-trol by Evanescent Wave Coupling between Guided Mode of Resonant Grating and Surface Phonon Polariton on Silicon Carbide Plate. Applied Physics Letters, 104, Article ID: 051127.
https://doi.org/10.1063/1.4864401
[22] Dahan, N., Niv, A. and Biener, G. (2008) Coherent Control of Thermal Emission from SiC Due to Coupled Resonant Cavity Structure. Optical Society of America.
https://doi.org/10.1109/CLEO.2008.4551028
[23] Arnold, C., Marquier, F. and Garin, M. (2012) Coherent Thermal Infrared Emission by Two-Dimensional Silicon Carbide Gratings. Physical Review B, 86, Article ID: 035316.
https://doi.org/10.1103/PhysRevB.86.035316
[24] Dahan, N., Niv, A. and Biener, G. (2007) Enhanced Coherency of Thermal Emission: Beyond the Limitation Imposed by Delocalized Surface Waves. Physical Review B, 76, Article ID: 045427.
https://doi.org/10.1103/PhysRevB.76.045427
[25] Biehs, S.A., Ben-Abdallah, P., Rosa, F., Joulain, K. and Greffet, J.-J. (2011) Nanoscale Heat Flux between Nanoporous Materials. Optics Express, 19, A1088-A1103.
https://doi.org/10.1364/OE.19.0A1088
[26] Biehs, S.A., Tschikin, M. and Ben-Abdallah, P. (2012) Hyperbolic Meta-Materials as an Analog of a Blackbody in the near Field. Physical Review Letters, 109, Article ID: 104301.
https://doi.org/10.1103/PhysRevLett.109.104301
[27] Christopher, R., Martini, F. and Politi, A. (2016) Strong and Coherent Coupling between Localized and Propagating Phonon Polaritons. Physical Review Letters, 116, Article ID: 246402.
[28] Mulet, J.P., Joulain, K., Carminati, R. and Greffet, J.J. (2001) Nanoscale Radiative Heat Transfer between a Small Particle and a Plane Surface. Applied Physics Letters, 78, 2931-2933.
https://doi.org/10.1063/1.1370118
[29] Francoeur, M., Menguç, M.P. and Vaillon, R. (2010) Local Density of Electromagnetic States within a Nanometric Gap Formed between Two Thin Films Supporting Surface Phonon Polari-tons. Journal of Applied Physics, 107, Article ID: 034313.
https://doi.org/10.1063/1.3294606
[30] Francoeur, M., Menguç, M.P. and Vaillon, R. (2010) Spectral Tuning of Near-Field Radiative Heat Flux between Two Thin Silicon Carbide Films. Journal of Physics D: Applied Physics, 43, Article ID: 075501.
https://doi.org/10.1088/0022-3727/43/7/075501
[31] Francoeur, M., Basu, S. and Petersen, S.J. (2011) Electric and Magnetic Surface Polariton Mediated Near-Field Radiative Heat Transfer between Metamaterials Made of Silicon Carbide Particles. Optics Express, 19, 18774-18788.
https://doi.org/10.1364/OE.19.018774
[32] Francoeur, M., Pinar, M. and Vaillon, R. (2011) Coexistence of Mul-tiple Regimes for Near-Field Thermal Radiation between Two Layers Supporting Surface Phonon Polaritons in the Infrared. Physical Review B, 84, Article ID: 075436.
https://doi.org/10.1103/PhysRevB.84.075436
[33] Dyakov, S.A., Dai, J. and Yan, M. (2014) Thermal Radiation Dynamics in Two Parallel Plates: The Role of Near Field. Physical Review B, 90, Article ID: 045414.
https://doi.org/10.1103/PhysRevB.90.045414
[34] Chalabi, H., Hasman, E. and Mark, L. (2015) Brongersma1. Effect of Shape in Near-Field Thermal Transfer for Periodic Structures. Physical Review B, 91, Article ID: 174304.
https://doi.org/10.1103/PhysRevB.91.174304
[35] Chalabi, H., Hasman, E. and Mark, L. (2015) Near-Field Ra-diative Thermal Transfer between a Nanostructured Periodic Material and a Planar Substrate. Physical Review B, 91, Article ID: 014302.
https://doi.org/10.1103/PhysRevB.91.014302
[36] Aieta, F., Genevet, P., Kats, M. A., Yu, N., Blanchard, R., Gaburro, Z. and Capasso, F. (2012) Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Letters, 12, 4932-4936.
https://doi.org/10.1021/nl302516v
[37] Zheludev, N.I. and Kivshar, Y.S. (2012) From Metamaterials to Metade-vices. Nature Materials, 11, 917-924.
https://doi.org/10.1038/nmat3431
[38] Jin, W., Polimeridis, A.G. and Rodriguez, A.W. (2016) Temperature Con-trol of Thermal Radiation from Composite Bodies. Physical Review B, 93, Article ID: 121403.
https://doi.org/10.1103/PhysRevB.93.121403
[39] Cho, J. and Goodson, K.E. (2015) Thermal Transport: Cool Electronics. Nature Materials, 14, 136-137.
https://doi.org/10.1038/nmat4194
[40] Schleeh, J., Mateos, J., Iniguez-de-la Torre, I., Wadefalk, N., Nilsson, P.A., Grahn, J. and Minnich, A.J. (2014) Phonon Black-Body Radiation Limit for Heat Dissipation in Electronics. Nature Materials, 14, 187-192.
https://doi.org/10.1038/nmat4126
[41] De Liberato, S. (2014) Light-Matter Decoupling in the Deep Strong Coupling Regime: The Breakdown of the Purcell Effect. Physical Review Letters, 112, Article ID: 016401.
https://doi.org/10.1103/PhysRevLett.112.016401
[42] Todorov, Y. (2014) Dipolar Quantum Electrodynamics Theory of the Three-Dimensional Electron Gas, Physical Review B, 89, Article ID: 075115.
https://doi.org/10.1103/PhysRevB.89.075115
[43] Hillenbrand, R., Taubner, T. and Keilmann, F. (2002) Phono-nenhanced Light-Matter Interaction at the Nanometrescale. Nature (London), 418, 159-162.
https://doi.org/10.1038/nature00899
[44] Fujii, G., Segawa, T., Mori, S., Namekata, N., Fukada, D. and Inoue, S. (2012) Preservation of Photon in Distinguish Ability after Transmission through Surface-Plasmon-Polariton Waveguide. Optics Letters, 37, 1535-1537.
https://doi.org/10.1364/OL.37.001535
[45] Di Martino, G., Sonnefraud, Y., Kena-Cohen, S., Tame, M., Özdemir, S.K., Kim, M.S. and Maier, S.A. (2012) Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides. Nano Letters, 12, 2504-2508.
https://doi.org/10.1021/nl300671w
[46] Huber, A., Ocelic, N., Kazantsev, D. and Hillenbrand, R. (2005) Near-Field Imaging of Mid-Infrared Surface Phonon Polariton Propagation. Applied Physics Letters, 87, Article ID: 081103.
https://doi.org/10.1063/1.2032595
[47] Heeres, R.W., Kouwenhoven, L.P. and Zwiller, V. (2013) Quantum Interference in Plasmonic Circuits. Nature Nanotechnology, 8, 719-722.
https://doi.org/10.1038/nnano.2013.150
[48] Li, D., Lawandy, N.M. and Zia, R. (2013) Surface Phononpolariton Enhanced Optical Forces in Silicon Carbide Nanostructures. Optics Express, 21, 20900-20910.
https://doi.org/10.1364/OE.21.020900
[49] Ilic, O., Bermel, P., Chen, G., Joannopoulos, J.D., Celanovic, I. and Soljacic, M. (2016) Tailoring High-Temperature Radiation and the Resurrection of the Incandescent Source. Nature Nanotechnology, 11, 320-324.
https://doi.org/10.1038/nnano.2015.309