# 海洋平台电缆参数重取对电压稳定评估的影响The Influence of Submarine Cable Parameter Modification on Voltage Stability Assessment of Offshore Platform

DOI: 10.12677/JEE.2018.63027, PDF, HTML, XML, 下载: 659  浏览: 1,356  国家科技经费支持

Abstract: Submarine cables are used for power transmission between offshore platforms, but their para-meters may change according to the operation condition, which may affect the evaluation of power grid stability. This paper focuses on the influence of submarine cable parameters modification on voltage stability assessment and voltage stability models of platforms were established based on L index, with the improved REI equivalence method. Based on the analysis result, the influence of submarine cable parameters modification can be confirmed.

1. 引言

2. 海底电缆模型及参数

${Q}_{b}={Q}_{a}-\omega L\cdot \left[{\left(\frac{P}{|{V}_{1}|}\right)}^{2}-{\left(\frac{{Q}_{a}}{|{V}_{1}|}\right)}^{2}\right]+\omega C{V}^{2}$ (1)

3. 海底电缆参数重取

Figure 1. Submarine cable model

${U}_{E}=-{X}_{R}{I}_{E}+{U}_{R}$ (2)

${\omega }_{i}=1-\frac{t-{t}_{i}}{t-{t}_{0}}$ (3)

${X}_{R}=-\frac{\underset{i=1}{\overset{N}{\sum }}{\omega }_{i}{U}_{Ei}{I}_{Ei}}{\underset{i=1}{\overset{N}{\sum }}{\omega }_{i}{I}_{Ei}^{2}}$ (4)

4. 静态电压可靠度评估L指标

$L=\underset{j\in {\alpha }_{L}}{MAX}\left({L}_{j}\right)=|1-\frac{\sum {\stackrel{˙}{F}}_{ji}{\stackrel{˙}{U}}_{i}}{{\stackrel{˙}{U}}_{j}}|$ (5)

5. 实际算例

Figure 2. Microgrid model of an offshore platform in the Bohai area

Table 1. Part of the submarine cable parameter retrieving results

Figure 3. Simulation results of voltage stability L index after parameter re-take. (a) Simulation results after regional grid A parameter retake; (b) Simulation results after regional grid B parameter retake; (c) Simulation results after regional grid C parameter retake

Figure 4. Results of voltage stability L indicator simulation after parameter re-take. (a) Simulation part results after regional grid A parameter retake; (b) Simulation part results after regional grid B parameter retake; (c) Simulation part results after regional grid C parameter retake

6. 结论

“十三五”国家科技重大专项“海上油田区域供电工程技术研究及应用(编号：2016ZX05058-004-008)”部分研究成果。

 [1] Bromhead, R.J. (1986) Offshore Electrical Systems. IEE Proceedings on Generation, Transmission and Distribution, 133, 457-461. https://doi.org/10.1049/ip-c.1986.0069 [2] 张浩. 未来海洋平台电力系统研究[J]. 船电技术, 2014, 34(11): 71-73. [3] 武晓朦, 刘健, 毕鹏翔. 配电网电压稳定性研究[J]. 电网技术, 2006, 30(24): 31-35. [4] Majumder, R. (2013) Some Aspects of Stability in Microgrids. IEEE Transactions on Power Systems, 28, 3243-3252. https://doi.org/10.1109/TPWRS.2012.2234146 [5] 郑连清, 庄琛, 马世强, 等. 微电网改进负荷功率分配策略与并网稳定性分析[J]. 电力自动化设备, 2015, 35(4): 17-23. [6] 刘怡. 大型电力系统电压稳定评估指标及其算法研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2009. [7] 张欢, 赵荣祥, 辛焕海, 等. 海岛电网发展状况与研究动态[J]. 电工技术学报, 2013, 28(11): 95-105. [8] 段献忠, 何仰赞, 陈德树. 论电力系统电压稳定几种使用判据和安全指标[J]. 电力系统自动化, 1994, 18(9): 36-41. [9] 吕婷婷, 段玉兵, 龚宇雷, 等. 微电网故障暂态分析及抑制方法研究[J]. 电力系统保护与控制, 2011, 39(2): 102-107 + 13. [10] Iyer, S., Belur, M. and Chandorkar, M. (2010) A Generalized Computational Method to Determine Stability of a Multi-Inverter Microgrid. IEEE Transactions on Power Electronics, 25, 2420-2432. https://doi.org/10.1109/TPEL.2010.2048720 [11] Årdal, A.P. (2011) Feasibility Studies on Integrating Offshore Wind Power with Oil Platforms. Institutt for elkraftteknikk, Trondheim. [12] Kolstad, M.L. (2013) Integrating Offshore Wind Power and Multiple Oil and Gas Platforms to the Onshore Power Grid Using VSC-HVDC Technology. Institutt for elkraftteknikk, Trondheim. [13] 张继芬, 胡鹏, 刘峻. 海上石油平台电网安全稳定控制系统[J]. 石油勘探与开发, 2009, 36(2): 237-241. [14] Kessel, P. and Glavitsch, H. (1986) Estimating the Voltage Stability of a Power System. IEEE Transactions on Power Delivery, 1, 346-354. https://doi.org/10.1109/TPWRD.1986.4308013