|
[1]
|
张庆灵. 广义大系统的分散控制与鲁棒控制[M]. 西北工业大学出版社, 1997.
|
|
[2]
|
Lewis, F.L. (1992) A Tutorial on the Geo-metric Analysis of Linear Time-Invariant Implicit Systems. Automatica, 28, 119-137. [Google Scholar] [CrossRef]
|
|
[3]
|
Leon Pritchard, F. (2003) On Implicit Systems of Differential Equations. Journal of Differential Equations, 194, 328-363. [Google Scholar] [CrossRef]
|
|
[4]
|
Luenberger, D.G. (1977) Dynamic Equations in Descriptor Form. IEEE Transactions on Automatic Control, 22, 312-321. [Google Scholar] [CrossRef]
|
|
[5]
|
Cobb, J.D. (1981) Feedback and Pole Placement in Descriptor Variable Sys-tems. International Journal of Control, 33, 1135-1146. [Google Scholar] [CrossRef]
|
|
[6]
|
Chyan, C.J., Du, N.Y. and Linh, V.H. (2008) On Data-Dependence of Exponential Stability and Stability Radii for Linear time-Varying Differential-Algebraic Systems. Journal of Differential Equations, 245, 2078-2102.
[Google Scholar] [CrossRef]
|
|
[7]
|
Hou, H.Z. and Zhang, Q.L. (2016) Novel Sliding Surface Design for Nonlinear Singular Systems. Neurocomputing, 177, 497-508. [Google Scholar] [CrossRef]
|
|
[8]
|
Ma, Y.C., Gu, N.N. and Zhang, Q.L. (2014) Non-Fragile Robust H∞ Control for Uncertain Discrete-Time Singular Systems with Time-Varying Delays. Journal of the Franklin Institute, 351, 3163-3181.
[Google Scholar] [CrossRef]
|
|
[9]
|
Zhang, Q.L. (2017) Sliding Mode Control for Singular Stochastic Mar-kovian Jump Systems with Uncertainties. Automatica, 79, 27-34.
|
|
[10]
|
Zhang, D. and Zhang, Q.L. (2018) Sliding Mode Control for T-S Fuzzy Singular Semi-Markovian Jump System. Nonlinear Analysis: Hybrid Systems, 30, 72-91.
|
|
[11]
|
Ma, Y.C., Jia, X.R. and Zhang, Q.L. (2018) Robust Observer-Based Finite-Time H∞ Control for Discrete-Time Singular Markovian Jumping System with Time Delay and Actuator Saturation. Nonlinear Analysis: Hybrid Systems, 28, 1-22. [Google Scholar] [CrossRef]
|
|
[12]
|
Krishnan, H. and Harris Mcclamroch, N. (1994) Tracking in Nonlinear Dif-ferential-Algebraic Systems with Applications to Constrained Robot Systems. Automatica, 30, 1885-1897. [Google Scholar] [CrossRef]
|
|
[13]
|
Rosenbrock, H.H. (1974) Structural Properties of Linear Dynamical Sys-tems. International Journal of Control, 20, 191-202. [Google Scholar] [CrossRef]
|
|
[14]
|
Brenan, K.E., Campbell, L. and Petzold, L.R. (1996) Numerical Solution of Initial Value Problems in Differential-Algebraic Equations. Physical Review D Particles & Fields, 85, 261-268.
|
|
[15]
|
Hill, D.J. and Mareels, I.Y. (1990) Stability Theory for Differential-Algebraic Model of Power Systems. IEEE Transactions on Circuits and Systems, 37, 1416-1423. [Google Scholar] [CrossRef]
|
|
[16]
|
Winkler, R. (2003) Stochastic Differential Algebraic Equations of Index 1 and Applications in Circuit Simulation. Journal of Computational and Applied Mathematics, 157, 477-505. [Google Scholar] [CrossRef]
|
|
[17]
|
Ayasun, S., Nwankpa, C.O. and Kwatny, H.G. (2005) An Efficient Method to Compute Singularity Induced Bifurcations of Decoupled Parameter-Dependent Differential Algebraic Power System Mode l. International Journal of Applied Mathematics and Computer Science, 167, 435-453. [Google Scholar] [CrossRef]
|
|
[18]
|
Shen, Q. and Zhang, T. (2007) Adaptive Variable Structure Control for Large-Scale Time-Delayed Systems with Unknown Nonlinear Dead-Zone. Journal of Systems Engineering and Electronics, 18, 865-870.
[Google Scholar] [CrossRef]
|
|
[19]
|
Bo, M., Gao, C. and Tang, S. (2012) Adaptive Variable Structure Control for Linear Systems with Time-Varying Multi-Delays and Mismatching Uncertainties. Physics Procedia, 33, 1753-1761.
[Google Scholar] [CrossRef]
|
|
[20]
|
Jiang, B., Gao, C. and Xie, J. (2015) Passivity Based Sliding Mode Control of Uncertain Singular Markovian Jump Systems with Time-Varying Delay and Nonlinear Perturbations. Applied Mathematics and Computation, 271, 187-200.
[Google Scholar] [CrossRef]
|
|
[21]
|
Jiang, B., et al. (2016) Sliding Mode Control of Markovian Jump Systems with Incomplete Information on Time-Varying Delays and Transition Rates. Applied Mathematics and Computation, 290, 66-79.
[Google Scholar] [CrossRef]
|
|
[22]
|
Liu, Z., Gao, C. and Kao, Y. (2015) Robust H-Infinity Control for a Class of Neutral-Type Systems via Sliding Mode Observer. Applied Mathematics and Computation, 271, 669-681. [Google Scholar] [CrossRef]
|
|
[23]
|
Han, Y., Kao, Y. and Gao, C. (2018) Robust Observer-Based H∞ Control for Uncertain Discrete Singular Systems with Time-Varying Delays via Sliding Mode Approach. ISA transactions, 80, 81-88.
[Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Han, Y., Kao, Y. and Gao, C. (2017) Robust Sliding Mode Control for Un-certain Discrete Singular Systems with Time-Varying Delays and External Disturbances. Automatica, 75, 210-216.
[Google Scholar] [CrossRef]
|
|
[25]
|
Xing, H. (2013) Delay-Independent Sliding Mode Control for a Class of Quasi-Linear Parabolic Distributed Parameter Systems with Time-Varying Delay. Journal of the Franklin Institute, 350, 397-418.
[Google Scholar] [CrossRef]
|
|
[26]
|
Mu, L., Gao, C. and Li, J. (2008) On the Integral Sliding-Mode Control for Sample-Data Systems with State Time-Delay. IFAC Proceedings Volumes, 41, 5846-5849. [Google Scholar] [CrossRef]
|
|
[27]
|
Gao, C., Liu, Z. and Xu, R. (2013) On Exponential Stabilization for a Class of Neutral-Type Systems with Parameter Uncertainties: An Integral Sliding Mode Approach. Applied Mathematics and Computation, 219, 11044-11055.
[Google Scholar] [CrossRef]
|
|
[28]
|
梁霄, 王林山, 刘云龙. 时滞反应扩散Hopfield神经网络的滑动模控制[J]. 控制理论与应用, 2012, 29(1): 47-52.
|
|
[29]
|
张彩虹, 刘云龙, 高存臣, 唐述宏, 孟波. Delta算子不确定系统的滑模变结构控制[J]. 控制与决策, 2012, 279(2): 237-242.
|
|
[30]
|
张彩虹, 刘云龙, 高存臣, 孟波. 基于隐Lyapunov函数的软变结构控制: 一种控制策略[J]. 控制与决策, 2012, 279(1): 71-76.
|
|
[31]
|
刘云龙, 高存臣, 赵林. 广义系统的动态软变结构控[J]. 系统工程与电子技术, 2011, 339(12): 2711-2715.
|
|
[32]
|
刘云龙, 高存臣, 任启峰, 郭真真. 水下机器人基于sigmoid函数的软变结构控制[J]. 电机与控制学报, 2012, 169(2): 90-95.
|
|
[33]
|
Sun, L., Lu, J., Liu, Y., Huang, T., Alsaadi, F.E. and Hayat, T. (2018) Variable Structure Controller Design for Boolean Networks. Neural Networks, 97, 107-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, H.P., Mustafa, G.I.Y. and Tian, Y. (2018) Model-Free Fraction-al-Order Sliding Mode Control for an Active Vehicle Suspension System. Advances in Engineering Software, 115, 452-461.
[Google Scholar] [CrossRef]
|
|
[35]
|
Huang, S., Zhou, B. and Li, C. (2018) Fractional-Order Modeling and Sliding Mode Control of Energy-Saving and Emission-Reduction Dynamic Evolution System. International Journal of Electrical Power & Energy Systems, 100, 400-410. [Google Scholar] [CrossRef]
|
|
[36]
|
Yang, B., Yu, T. and Shu, H. (2018) Perturbation Observer Based Fractional-Order Sliding-Mode Controller for MPPT of Grid-Connected PV Inverters: Design and Re-al-Time Implementation. Control Engineering Practice, 79, 105-125.
[Google Scholar] [CrossRef]
|
|
[37]
|
Chen, J., Li, C. and Yang, X. (2018) Global Mittag-Leffler Projective Synchronization of Nonidentical Fractional-Order Neural Networks with Delay via Sliding Mode Control. Neurocomputing, 313, 324-332.
[Google Scholar] [CrossRef]
|
|
[38]
|
Wang, Y., Yan, F. and Jiang, S. (2018) Time Delay Control of Cable-Driven Manipulators with Adaptive Fractional-Order Nonsingular Terminal Sliding Mode. Advances in Engineering Software, 121, 13-25.
[Google Scholar] [CrossRef]
|
|
[39]
|
Zheng, Z. and Sun, L. (2018) Adaptive Sliding Mode Trajectory Tracking Control of Robotic Airships with Parametric Uncertainty and Wind Disturbance. Journal of the Franklin Institute, 355, 106-122.
[Google Scholar] [CrossRef]
|
|
[40]
|
Kang, S., Yan, H. and Dong, L. (2018) Finite-Time Adaptive Sliding Mode Force Control for Electro-Hydraulic Load Simulator Based on Improved GMS Friction Model. Mechanical Systems and Signal Processing, 102, 117-138.
[Google Scholar] [CrossRef]
|
|
[41]
|
Long, S., Wu, Y. and Zhong, S. (2018) Stability Analysis for a Class of Neu-tral Type Singular Systems with Time-Varying Delay. Applied Mathematics and Computation, 339, 113-131. [Google Scholar] [CrossRef]
|
|
[42]
|
Dassios, I.K. and Baleanu, D.I. (2018) Caputo and Related Fractional Derivatives in Singular Systems. Applied Mathematics and Computation, 337, 591-606. [Google Scholar] [CrossRef]
|
|
[43]
|
Tudor, S.F. and Oară, C. (2018) Robust Stabilization of Discrete Generalized Systems. Automatica, 94, 334-340.
[Google Scholar] [CrossRef]
|
|
[44]
|
Tsai, J.S.H., Fang, J.S. and Yan, J.J. (2018) Hybrid Robust Discrete Sliding Mode Control for Generalized Continuous Chaotic Systems Subject to External Disturbances. Nonlinear Analysis: Hybrid Systems, 29, 74-84.
[Google Scholar] [CrossRef]
|
|
[45]
|
Cui, Y., Shen, J. and Chen, Y. (2018) Stability Analysis for Positive Singular Systems with Distributed Delays. Automatica, 94, 170-177. [Google Scholar] [CrossRef]
|
|
[46]
|
Zhang, X. and Chen, Y. (2017) Admissibility and Robust Stabilization of Continuous Linear Singular Fractional Order Systems with the Fractional Order α: The 0<α<1 Case. Isa Transactions. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ma, Y., Jia, X. and Zhang, Q. (2018) Robust Observer-Based Finite-Time H∞ Control for Discrete-Time Singular Markovian Jumping System with Time Delay and Actuator Saturation. Nonlinear Analysis: Hybrid Systems, 28, 1-22.
[Google Scholar] [CrossRef]
|
|
[48]
|
高存臣, 刘云龙, 考永贵. 时滞广义变结构控制系统[M]. 北京: 科学出版社, 2017.
|
|
[49]
|
Adamy, J. and Flemmy, A. (2004) Soft Variable-Structure Controls: A Survey. Automatica, 40, 1821-1844.
[Google Scholar] [CrossRef]
|
|
[50]
|
Liu, Y.L., Gao, C.C. and Meng, B. (2011) Dynamic Soft Variable Structure Control for Singular Systems. Proceedings of the 30th Chinese Control Conference, Yantai, 22-24 July 2011, 2572-2577.
|
|
[51]
|
Liu, Y., Kao, Y., Gu, S. and Karimi, H.R. (2015) Soft Variable Structure Controller Design for Singular Systems. Journal of the Franklin Institute, 352, 1613-1626. [Google Scholar] [CrossRef]
|
|
[52]
|
Röthig, A. and Adamy, J. (2016) On Stabilizing Linear Systems with Input Saturation via Soft Variable Structure Control Laws. Systems & Control Letters, 89, 47-54. [Google Scholar] [CrossRef]
|
|
[53]
|
Latosiński, P. and Bartoszewicz, A. (2018) Discrete Time Sliding Mode Controllers with Relative Degree One and Two Switching Variables. Journal of the Franklin Institute, 1-15. [Google Scholar] [CrossRef]
|
|
[54]
|
Devika, K.B. and Thomas, S. (2018) Sliding Mode Controller Design for MIMO Nonlinear Systems: A Novel Power Rate Reaching Law Approach for Improved Performance. Journal of the Franklin Institute, 79, 1-12.
|
|
[55]
|
Liu, Y., Wang, Z. and Xiong, L. (2018) DFIG Wind Turbine Sliding Mode Control with Exponential Reaching Law under Variable Wind Speed. International Journal of Electrical Power & Energy Systems, 96, 253-260.
[Google Scholar] [CrossRef]
|
|
[56]
|
Wang, Y., Jiang, S. and Chen, B. (2018) A New Continuous Fractional-Order Nonsingular Terminal Sliding Mode Control for Cable-Driven Manipulators. Advances in Engineering Software, 119, 21-29.
[Google Scholar] [CrossRef]
|
|
[57]
|
宋立忠, 李槐树, 姚琼荟. 基于趋近律方法的离散时间系统变结构控制[J]. 控制理论与应用, 2008, 25(3): 525-528.
|
|
[58]
|
瞿少成, 王永骥. 基于扰动补偿的离散滑模变结构控制设计[J]. 控制与决策, 2004, 19(3): 311-315.
|
|
[59]
|
刘云龙. 变结构控制策略及在广义系统与Delta算子系统中设计研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2012.
|
|
[60]
|
Benamor, A. and Messaoud, H. (2018) Robust Adaptive Sliding Mode Control for Uncertain Systems with Unknown Time-Varying Delay Input. ISA transactions, 79, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Gracia, L., Solanes, J.E. and Muñoz-Benavent, P. (2018) Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics, 52, 102-118. [Google Scholar] [CrossRef]
|
|
[62]
|
Liu, D. and Yang, G.H. (2018) Performance-Based Data-Driven Model-Free Adaptive Sliding Mode Control for a Class of Discrete-Time Nonlinear Processes. Journal of Process Control, 68, 186-194.
[Google Scholar] [CrossRef]
|
|
[63]
|
Mofid, O. and Mobayen, S. (2018) Adaptive Sliding Mode Control for Finite-Time Stability of Quad-Rotor UAVs with Parametric Uncertainties. ISA Transactions, 72, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Riani, A., Madani, T. and Benallegue, A. (2018) Adaptive Integral Terminal Sliding Mode Control for Upper-Limb Rehabilitation Exoskeleton. Control Engineering Practice, 75, 108-117.
[Google Scholar] [CrossRef]
|
|
[65]
|
Zhang, Y. and Yan, P. (2018) An Adaptive Integral Sliding Mode Control Approach for Piezoelectric Nano-Manipulation with Optimal Transient Performance. Mechatronics, 52, 119-126.
[Google Scholar] [CrossRef]
|
|
[66]
|
Gao, L., Wang, D. and Zong, G. (2018) Exponential Stability for Generalized Stochastic Impulsive Functional Differential Equations with Delayed Impulses and Markovian Switching. Nonlinear Analysis: Hybrid Systems, 30, 199-212.
[Google Scholar] [CrossRef]
|
|
[67]
|
Blom, H.A.P., Ma, H. and Bakker, G.J.B. (2018) Interacting Particle Sys-tem-Based Estimation of Reach Probability for a Generalized Stochastic Hybrid System. IFAC—PapersOnLine, 51, 79-84.
[Google Scholar] [CrossRef]
|
|
[68]
|
Zhang, L. and Li, G. (2018) Controller Design for Discrete-Time Hybrid Linear Parameter-Varying Systems with Semi-Markov Mode Switching. Journal of the Franklin Institute, 1-16. [Google Scholar] [CrossRef]
|
|
[69]
|
Wang, H., Shen, H. and Xie, X. (2018) Robust Adaptive Neural Control for Pure-Feedback Stochastic Nonlinear Systems with Prandtl-Ishlinskii Hysteresis. Neurocomputing, 314, 169-176. [Google Scholar] [CrossRef]
|
|
[70]
|
Zhuang, G., Ma, Q. and Zhang, B. (2018) Admissibility and Stabilization of Stochastic Singular Markovian Jump Systems with Time Delays. Systems & Control Letters, 114, 1-10. [Google Scholar] [CrossRef]
|