AAM  >> Vol. 7 No. 10 (October 2018)

    矩形域上的二维对流扩散方程边界流量反问题
    Inverse Problems of Boundary Flux in the Two-Dimensional Convection-Diffusion Equation in a Rectangular Domain

  • 全文下载: PDF(598KB)    PP.1357-1367   DOI: 10.12677/AAM.2018.710158  
  • 下载量: 318  浏览量: 2,053  

作者:  

刘倩:山东外贸职业学院泰安校区,山东 泰安

关键词:
对流扩散方程边界流量反问题变分伴随方法条件唯一性Lipschitz稳定性数值反演Convection-Diffusion Equation Boundary Flux Inverse Problem Variational Adjoint Problem Conditional Uniqueness Lipschitz Stability Numerical Inversion

摘要:

对于给出的二维对流扩散方程,考虑一个确定边界流量的反问题。应用变分伴随方法,基于联系附加数据和未知边界流量的变分恒等式,证明反问题解的条件唯一性,并建立反问题的Lipschitz稳定性。基于ADI差分方法对正问题进行数值求解,并利用同论正则化方法对边界流量进行数值反演。

This article deals with an inverse problem of determining the boundary flux in the two-dimensional convection-diffusion equation in a rectangular domain. Similarly to the method used in my previous paper, a conditional uniqueness and Lipschitz stability for the inverse boundary problem are proved based on a variational identity and controllability to an adjoint problem. Moreover, the ADI scheme is applied to solve the forward problem, and numerical inversions are performed also utilizing the homotopy regulrizarion algorithm.

文章引用:
刘倩. 矩形域上的二维对流扩散方程边界流量反问题[J]. 应用数学进展, 2018, 7(10): 1357-1367. https://doi.org/10.12677/AAM.2018.710158

参考文献

[1] Yamamoto, M. (1993) Conditional Stability in Determination of Force Terms of Heat Equations in a Rectangle. Mathematical and Computer Modelling, 18, 79-88.
[2] Isakov, V. (1999) Some Inverse Problems for the Diffusion Equation. Inverse Problems, 15, 3-10.
https://doi.org/10.1088/0266-5611/15/1/004
[3] Isakov, V. (1991) Inverse Parabolic Problems with the Final Overdetermination. Communications on Pure and Applied Mathematics, 54, 185-209.
[4] Bushuyev, I. (1995) Global Uniqueness for Inverse Parabolic Problems with Final Observation. Inverse Problems, 11, L11-L16.
https://doi.org/10.1088/0266-5611/11/4/001
[5] Li, G.S. and Yamamoto, M. (2006) Stability Analysis for Determining a Source Term in a 1-D Advection-Dispersion Equation. Journal of Inverse and Ill-Posed Problems, 14, 147-155.
https://doi.org/10.1515/156939406777571067
[6] 李功胜, 贾现正, 孙春龙, 杜殿虎. 对流弥散方程线性源项系数反演的变分伴随方法[J]. 应用数学学报, 2015, 38(6): 1001-1015.
[7] Isakov, V. (1998) Inverse Problems for Partial Differential Equations. Spring-Verlag, New York.
https://doi.org/10.1007/978-1-4899-0030-2
[8] Du Chateau, P. and Rundell, W. (1985) Unicity in an Inverse Problem for an Unknown Term in a Reaction Diffusion Equation. J. Differential Equations, 59, 155-164.
https://doi.org/10.1016/0022-0396(85)90152-4
[9] Du Chateau, P. (1995) Monotomicity and Invertibility of Coefficient to Data Mapping for Parabolic Inverse Problems. SIAM Journal on Mathematical Analysis, 26, 1473-1487.
https://doi.org/10.1137/S0036141093259257
[10] Du Chateau, P. (1997) An Inverse Problem for the Hydraulic Properties of Porous Media. SIAM Journal on Mathematical Analysis, 28, 611-632.
https://doi.org/10.1137/S0036141095285673
[11] Du Chateau, P., Thelwell, R. and Butters, M. (2004) Analysis of an Adjoint Problem Approach to the Identification of an Unknown Diffusion Coefficient. Inverse problems, 20, 601-625.
https://doi.org/10.1088/0266-5611/20/2/019
[12] Hasanov, A., Du Chateau, P. and Petkas, B. (2006) An Adjoint Problem Approach and Coarsefine Mesh Method for Identification of the Diffusion in a Linear Parabolic Equation. Journal of Inverse and Ill-Posed Problems, 14, 435-463.
https://doi.org/10.1515/156939406778247615
[13] Du Chateau, P. (2013) An Adjoint Method for Proving Identifiability of Coefficients in Parabolic Equations. Journal of Inverse and Ill-Posed Problems, 21, 639-663.
[14] 刘倩, 李功胜, 王桢东. 一个二维对流扩散方程源项反问题的条件唯一性[J]. 应用数学进展, 2016, 5(4): 591-597.
[15] Choulli, M. and Yamamoto, M. (2004) Conditional Stability in Determining a Heat Source. Journal of Inverse and Ill-Posed Problems, 12, 233-244.
https://doi.org/10.1515/1569394042215856
[16] McCamy, R.C., Mizel, V.J. and Seidman, T.I. (1968) Approximate Boundary Controllability of the Heat Equation. Journal of Mathematical Analysis and Applications, 23, 699-703.
https://doi.org/10.1016/0022-247X(68)90148-0
[17] 李功胜, 姚德. 扩散模型的源项反演及其应用[M]. 北京: 科学出版社, 2014.
[18] 娄和忠. 溶质运移模型与多参数反演算法[D]: [硕士学位论文]. 淄博: 山东理工大学, 2012.
[19] 孙春龙, 含多个时间分数阶反常扩散方程的反问题研究[D]: [硕士学位论文]. 淄博: 山东理工大学, 2016.
[20] Li, G.S., Cheng, J., Yao, D., Liu, H.L. and Liu, J.J. (2007) One-Dimensional Equilibrium Model and Source Parameter Determination for Soil-Column Experiment. Applied Mathematics and Computation, 190, 1365-1374.
https://doi.org/10.1016/j.amc.2007.02.064
[21] Li, G.S., Tan, Y.J., Yao, D., Wang, X.Q. and Liu, H.L. (2008) A Nonlinear Mathematical Model for an Undisturbed Soil-Column Experiment and Source Parameter Identification. Inverse Problems in Science and Engineering, 16, 885-901.
https://doi.org/10.1080/17415970802015880