Nudel基因的克隆及在COS7细胞中的表达研究
Cloning of Nudel Gene and Its Expression in COS7 Cells
DOI: 10.12677/AMB.2018.74018, PDF, HTML, XML, 下载: 1,046  浏览: 2,639  科研立项经费支持
作者: 周子建, 魏邦毅, 曾思宇, 邹志成, 王 鹏, 陈 俊*:武汉科技大学生物工程教研室,湖北 武汉;汪 瑶:华中科技大学生命科学学院,湖北 武汉
关键词: Nudel基因cDNA克隆基因表达抑癌基因PtenCOS7细胞Nudel Gene cDNA clone Gene Expression Tumor Suppressor Gene Pten COS7 Cell
摘要: 本实验克隆并构建了携带红荧光报告基因的Nudel真核表达载体,为后续研究Nudel基因的功能打下基础。查阅Gene card可知,Nudel基因在肺组织中的RPKM值为7.97,本研究以人肺癌细胞A549细胞为材料,提取总RNA并反转录出cDNA,再以cDNA为模板扩增Nudel基因;将目的基因与pMD18-T载体连接,测序鉴定并命名为pT-Nudel;然后再将Nudel基因亚克隆至含红荧光报告基因的载体pDsRed-C1,构建的表达载体命名为pRed-Nudel;提取去内毒素的超纯质粒,转染COS7细胞,检测Nudel的表达情况以及抑癌基因Pten对Nudel表达的影响。结果表明,克隆的Nudel基因经测序鉴定正确;将Nudel基因亚克隆至红荧光表达载体pDsRed-C1,成功构建pRed-Nudel,并在COS7中成功表达。同时观察到与突变型的PtenC124S相比,野生型的Pten有抑制Nudel表达的可能,需要后续的实验进一步验证。
Abstract: In this study, Nudel gene was cloned and used to construct a eukaryotic expression vector har-boring a red fluorescent gene. According to the Gene card data, the RPKM value of Nudel is 7.97 in lung tissue, so the total RNA was extracted from the lung cancer cells A549. The cDNA was made from the RNA and used as template to amplify Nudel gene. Nudel gene was cloned into pMD18-T vector and named as pT-Nudel after being confirmed by sequencing. Then this gene was subcloned to pDsRed-C1 vector which harbors a red fluorescent gene, to achieve the expression vector pRed-Nudel. Ultrapure plasmids pRed-Nudel free of endotoxin were isolated and used to transfect COS7 cells. The expression of Nudel and the impact of tumor suppressor gene Pten on the expression of Nudel were investigated. The results showed that the Nudel gene was successfully cloned and the expression vector pRed-Nudel was successfully constructed by subcloning Nudel gene into the expression vector pDsRed-C1. Nudel was expressed in COS7 cells. Different from the mutated PtenC124S, the wild type Pten restrained the expression of Nudel possibly, which needs further verification.
文章引用:周子建, 魏邦毅, 曾思宇, 邹志成, 王鹏, 汪瑶, 陈俊. Nudel基因的克隆及在COS7细胞中的表达研究[J]. 微生物前沿, 2018, 7(4): 149-155. https://doi.org/10.12677/AMB.2018.74018

1. 引言

Nudel是一类进化上保守的蛋白,在体内参与多个信号通路的调控与疾病的发生。Nudel与多种蛋白质相互作用,包括dynein、lissencephaly 1蛋白(Lis1)、精神分裂症1 (Disc1)和 14-3-3 ζ [1] [2] [3] 。Eva Klinman等人的研究显示,Nudel/Lis1复合体通过直接调控动力蛋白的活性,激活异常的CDK5,进而引起神经轴突的运输中断,而轴突运输的中断与很多神经退行性疾病有关 [4] 。Moon等人的研究表明,Nudel集中于着丝粒附近,调控有丝分裂纺锤体的形成和有丝分裂的过程 [5] 。另外,Nudel具有寡肽酶活性,有望作为潜在的精神分裂症的生物分子标记 [6] 。Nudel可以与动力蛋白相互作用而影响细胞运动和物质运输,例如溶酶体运输 [7] 和细胞器的定位 [8] 。Nudel也可以不依赖细胞质动力蛋白而参与细胞迁移,它通过与Cdc42竞争结合Cdc42GAP,使Cdc42从Cdc42GAP上释放而被活化,从而阻止细胞的极化与伪足的形成。除此之外,Nudel通过与黏着斑蛋白桩蛋白相互作用,而有助于在迁移细胞的前缘形成新的吸附 [9] 。细胞迁移与肿瘤转移密切相关,Pten是著名的肿瘤抑制因子,很多研究表明,Pten是细胞运动的负调控因子 [10] [11] ,在Pten突变体中,细胞运动和增殖会加剧,这是细胞癌变的标志 [12] 。Pten是细胞骨架的通用开关,通过调控肌动蛋白和微管防止细胞过度增殖 [13] 。本研究以A549细胞为材料,进行Nudel基因的克隆、鉴定及在COS7细胞中的表达等,并初步检测了抑癌基因Pten对Nudel表达的影响,为进一步研究Nudel基因对及细胞迁移的影响打下基础。

2. 材料与方法

2.1. 材料

A549细胞、pDsRed-C1载体、感受态细胞DH5α由本实验室保存;pMD18-T、T4连接酶购自TaKaRa公司;内切酶Xho I、BamH I购自Thermo公司;胶回收试剂盒:E.Z.N.A Gel Extraction Kit(100)试剂盒;质粒提取试剂盒:E.Z.N.A. Plasmid Mini Kit I(100)试剂盒;超纯质粒提取试剂盒:E.Z.N.A Endo-free Plasmid Mini II试剂盒,Trizol、逆转录试剂盒M-MLV购自Invitrogen公司;转染试剂PEI购自Proteintech公司。

2.2. RT-PCR扩增Nudel目的基因

选取生长状态良好的A549细胞(培养条件:RPMI 1640培养基,10%胎牛血清,37℃,5% CO2)为材料,提取总RNA。以此RNA为模板,参照Invitrogen的说明书进行反转录获得cDNA。以cDNA为模板,扩增目的基因Nudel,扩增体系:ddH2O 15.5 μL,cDNA 0.5 μL,上下游引物各0.5 μL,dNTPs ( 10 mM ) 2 μL,10 × EXTaq Buffer,EXTaq 0.5 μL。扩增条件:预变性95℃ 5 min,95℃ 30 s,50℃ 30 s、72℃ 1 min 30 s,35个循环,72℃ 10 min,最后4℃保存。扩增Nudel的引物,上游引物: 5’ -ATGGATGGTGAAGATATACCAG -3’ ,下游引物: 5’ -TCACACACTGAGAGGCAGCATAC-3’(引物自行设计,由武汉擎科公司合成)。

2.3. 构建pT-Nudel和pDsRed-Nudel载体

将扩增的目的基因克隆至pMD18-T载体上,进行测序鉴定,正确的克隆命名为pT-Nudel。以测序鉴定后的质粒pT-Nudel为模板,采用高保真酶扩增Nudel目的基因。扩增体系:ddH2O 34 μL,pT-Nudel质粒DNA稀释100倍取1 μL (约50 ng),上下游引物各1 μL,dNTPs ( 2 mM) 5 μL,MgSO4 ( 25 mM) 2 μL,10 × KOD buffer 5 μL,KOD Polymerase 1 μL。扩增条件:预变性95℃ 5 min,95℃ 30 s,50℃ 30 s、68℃ 1 min 30 s,35个循环,68℃ 10 min,最后4℃保存。扩增Nudel的引物,上游引物: 5’ -CCGCTCGAGATGGATGGTGAAGATATACCAG -3’ ,引入Xho I酶切位点,下游引物: 5’ -CGGGATCCTCACACACTGAGAGGCAGCATAC -3’ ,引入BamH I酶切位点。

2.4. Nudel基因在真核细胞中COS7中的表达

制备去内毒素的超纯pDsRed-Nudel质粒,检测DNA的浓度与纯度,转染到COS7细胞,并在荧光显微镜下进行观察。细胞转染:采用PEI转染试剂进行转染,12孔板种细胞过夜贴壁,DNA与转染试剂比例1:3 (μg:μL),转染步骤参照PEI说明书进行,转染后30小时置于显微镜下检测。

3. 结果与分析

3.1. A549细胞总RNA的提取与Nudel基因的扩增

培养A549细胞,选取生长状态良好的A549细胞为材料,提取总RNA。RNA浓度测定表明,1号样品浓度为730 ng/μL,A260/280比值为1.98,2号样品浓度为695 ng/μL,A260/280比值为1.97,说明提取的RNA 纯度比较高。提取的RNA进行电泳检测,结果见图1(A)。可以看到清晰的三条带,分别是28 S,18 S和5.8 S,表明提取的RNA完整性良好,可以用于反转录。

以总RNA为模板,反转录获得cDNA,再以cDNA为模板,扩增目的基因 Nudel。扩增结果见图1(B),电泳条带单一,对比DNA Marker,扩增的目的条带大小在1000 bp附近,与NCBI数据库里提供的Nudel基因(1038 bp)大小一致,初步判断扩增产物是目标产物,也说明A549细胞中Nudel基因有较高的表达水平。

3.2. 构建pT-Nudel和pDsRed-Nudel载体

将Nudel基因插入pMD18-T载体中,转化大肠杆菌DH5α,通过菌落PCR筛选阳性克隆,菌落PCR扩增结果见图2(A),在对应Maker1000 bp的位置有条带出现,与cDNA做模板扩增的条带大小一致。

(A) (B)

Figure 1. Amplification Nudel gene by RT-PCR. (A) The total RNA was extracted from A549 cells: 1 & 2 samples were the total RNA extracted from A549 cells; (B) Amplification of Nudel gene from the cDNA: M: DNA marker; 1, 2 & 3 samples were Nudel gene fragments amplified from the cDNA (about 1000 bp)

图1. RT-PCR扩增Nudel基因。(A) A549细胞总RNA提取电泳检测:1 & 2样品均为提取的A549细胞总RNA;(B)从A549细胞cDNA中扩增Nudel基因:M:DNA marker;1、2、3均为扩增的Nudel基因片段

(A) (B)

Figure 2. Construction the recombinants of pT-Nudel. (A) Identification the recombinant pT-Nudel by cloning PCR: M: DNA marker, 1, 2 & 3samples were the cloning PCR of recombinant pT-Nudel; (B) Isolation the recombinant plasmid pT-Nudel: M: DNA marker, 1, 2 & 3 samples were the recombinant pT-Nudel plasmids

图2. 构建重组质粒pT-Nudel。(A) 重组质粒pT-Nudel 菌落PCR鉴定:M:DNA marker,1、2&3为pT-Nudel菌落PCR;(B) 提取pT-Nudel重组质粒DNA:M:DNA marker,1、2&3为提取的重组质粒pT-Nudel

提取重组质粒DNA,电泳检测重组质粒大小,结果见图2(B),提取的质粒呈现3条带,中间的条带为质粒的线性条带,对比Marker,该线性条带在3000 bp和5000 bp之间,pMD18-T质粒大小为2692 bp,Nudel基因大小为1038 bp,重组质粒理论大小为3730 bp,从电泳结果判断,所提取的重组质粒大小正确,将正确的克隆进一步进行测序定。将测序结果在NCBI中用BLAST进行比对分析,本实验从A549肺泡细胞中所克隆的Nudel基因序列与NCBI数据库中的Nudel基因匹配度为100%,序列完整,并且没有发生碱基突变。

在此基础上,进一步将Nudel基因亚克隆至携带红荧光的真核表达载体pDsRed-C1上,亚克隆的限制性酶切位点为Xho I和BamH I,构建重组质粒pDsRed-Nudel。提取重组质粒,电泳检测见图3(A),pDsRed-C1载体大小为4700 bp,Nudel基因大小1038 bp,那么重组质粒pDsRed-Nudel的大小为5738 bp,由图3(A)中性条带大小判断,所提取的重组质粒大小正确。将提取的重组质粒pDsRed-Nudel用Xho I和BamH I进行双酶切鉴定,电泳结果显示(见图3(B)),在1000 bp和5000 bp的位置分别有条带出现,与预期相符,1000 bp附近的是Nudel基因片段,5000 bp附近的是载体片段。由此可见,Nudel基因成功的亚克隆到了红荧光表达载体上,构建了pDsRed-Nudel载体。

3.3. 重组质粒pDsRed-Nudel转染COS7细胞

利用PEI转染试剂,将重组质粒pDsRed-Nudel转染COS7细胞,检测其表达情况。结果如下(见图4),在平行转染条件下,pDsRed-C1空载体转染COS7细胞(见图4(B)),转染效率较重组质粒pDsRed-Nudel要高(见图4(D))。重组质粒pDsRed-Nudel转染COS7细胞的效率虽然较低,但是仍然观测到了荧光,初步判断pDsRed-Nudel在COS7细胞中能够表达。

(A) (B)

Figure 3. Construction the eukaryotic expression vector pRed-Nudel. (A) Isolation the recombinant pRed-Nudel plasmids: M: DNA marker; 1, 2, 3 & 4 samples were the recombinant pRed-Nudel plasmids; (B) Digestion the recombinant pRed-Nudel by restriction enzyme Xho I and BamH I: M: DNA marker; 1 & 2 samples were the recombinant pRed-Nudel digested by Xho I and BamH I

图3. 构建真核表达载体pRed-Nudel。(A) 提取重组质粒pRed-Nudel:M:DNA marker;1、2、3&4为提取的pRed-Nudel重组质粒;(B) 双酶切鉴定重组质粒pRed-Nudel:M:DNA marker;1&2为重组质粒pRed-Nudel双酶切

3.4. 抑癌基因Pten及其突变体对Nudel基因表达的影响

本实验克隆Nudel的目的,是为了考察Nudel对肿瘤细胞迁移的影响,而Pten基因是著名的肿瘤抑制基因,因此本实验将野生型的Pten和突变型的Pten即C124SPten (Pten第124位的氨基酸C突变成S),分别与Red-Nudel共转染COS7细胞,并在荧光显微镜下进行观察。结果发现,与突变型的C124SPten相比(见图5(D)),野生型的Pten与Red-Nudel共转染(见图5(B)),红荧光更少,推测124位的突变对Nudel的表达存在一定的影响。

Figure 4. Transfection the expression vector pRed-Nudel into COS7 cells. (A) (B) Transfection the vector pDsRed-C1 into COS 7 cells, (A) At common optical path; (B) At fluorescence optical path; (C) (D) Transfection the expression vector pRed-Nudel into COS7 cells, (C) At common optical path; (D) At fluorescence optical path; Note: bar = 100 μm

图4. 重组质粒pRed-Nudel转染COS7细胞。(A) (B) pDsRed-C1转染COS7细胞,(A)图为白光,(B)图为激发光;(C) (D) pRed-Nudel转染COS7细胞,(C)图为白光,(D)图为激发光;注:图中比例尺为100 μm

4. 讨论

本实验以A549细胞为材料,成功获得目的基因Nudel,并构建携带红荧光报告基因的真核表达载体 pRed-Nudel。查阅Gene card可知,Nudel基因在骨髓普遍高表达,RPKM值为18.6,其次是肾上腺,RPKM

Figure 5. Co-transfection Pten or PtenC124S and pRed-Nude into COS7 cells. (A) (B) Co-transfection Pten and pRed-Nudel into COS7 cells, (A) At common optical path; (B) At fluorescence optical path; (C) (D) Co-transfection PtenC124S and pRed-Nudel into COS7 cells, (C) At common optical path; (D) At fluorescence optical path; Note: bar = 100 μm

图5. Pten和PtenC124S与pRed-Nudel共转染COS7细胞。(A) (B) Pten和pRed-Nudel共转染COS7细胞,(A)图为白光,(B)图为激发光;(C) (D) PtenC124S和pRed-Nudel共转染COS7细胞,(C)图为白光,(D)图为激发光;注:图中比例尺为100 μm

值为13.4。在另外的25种组织中均不同程度检测到Nudel的表达,具体表达情况见图6,在肺组织中的RPKM值约为7.97左右,RPKM值的大小显示的是该基因在相应的组织中表达量的高低。本实验所用的是A549细胞,该细胞为人肺泡上皮细胞。实验结果表明,Nudel基因在A549细胞中有表达,因此成功扩增到了该基因,测序结果显示,该基因在A549细胞株中,没有突变。

Figure 6. The Nudel gene expression level in different tissue

图6. Nudel基因在不同组织中的表达水平

Nudel是一种保守的中心体蛋白质,在细胞中绝大部分分布于细胞质,但在间期在中心体上有较强的定位,在有丝分裂期分布于整个纺锤体 [14] 。在体内,Nudel对于细胞运动的关键蛋白—胞质动力蛋白发挥功能至关重要,包括细胞内运输、有丝分裂和细胞迁移等。Nudel通过与Cdc42竞争结合Cdc42GAP,使得Cdc42释放而被活化,进而促进细胞迁移 [9] 。本实验初步尝试将野生型Pten和突变型PtenC124S与Red-Nudel共转染,观察到与突变型PtenC124S相比,野生型Pten对Red-Nudel的表达有抑制作用,需要进一步实验证实,如果Pten下调Nudel的表达,Nudel水平降低,则Nudel竞争结合Cdc42GAP水平降低,那么Cdc42GAP与Cdc42结合增加,则细胞迁移降低。也就是说,Pten通过下调Nudel进而抑制细胞迁移,这与Pten抑癌基因的功能是相符的 [15] 。

致谢

感谢湖北省自然科学基金资助项目(2015CFB490)的资助;感谢全国大学生创新创业大赛项目(201710488013)的资助。

NOTES

*通讯作者。

参考文献

[1] Chansard, M., Hong, J.H., Park, Y.U., et al. (2011) Ndel1, Nudel (Noodle): Flexible in the Cell? Cytoskeleton, 68, 540-554.
https://doi.org/10.1002/cm.20532
[2] Vallee, R.B., McKenney, R.J. and Ori-McKenney, K.M. (2012) Multiple Modes of Cytoplasmic Dynein Regulation. Nature Cell Biology, 14, 224-230.
https://doi.org/10.1038/ncb2420
[3] Bradshaw, N.J., Hennah, W. and Soares, D.C. (2013) NDE1 and NDEL1: Twin Neurodevelopmental Proteins with Similar “Nature” but Different “Nurture”. Biomolecular Concepts, 4, 447-464.
https://doi.org/10.1515/bmc-2013-0023
[4] Klinman, E. and Holzbaur, E.L. (2015) Stress-Induced CDK5 Activation Disrupts Axonal Transport via Lis1/Ndel1/ Dynein. Cell Reports, 12, 462-473.
https://doi.org/10.1016/j.celrep.2015.06.032
[5] Moon, H.M., Youn, Y.H., Pemble, H., et al. (2014) LIS1 Controls Mitosis and Mitotic Spindle Organization via the LIS1-NDEL1-Dynein Complex. Human Molecular Genetics, 23, 449-466.
https://doi.org/10.1093/hmg/ddt436
[6] Bradshaw, N.J. and Hayashi, M.A. (2017) NDE1 and NDEL1 from Genes to (mal) Functions: Parallel but Distinct Roles Impacting on Neurodevelopmental Disorders and Psychiatric Illness. Cellular and Molecular Life Sciences, 74, 1191-1210.
https://doi.org/10.1007/s00018-016-2395-7
[7] Zhang, Q., Wang, F., Cao, J., et al. (2009) Nudel Promotes axonal Lysosome Clearance and Endo-Lysosome Formation via Dyne-in-Mediated Transport. Traffic, 10, 1337-1349.
https://doi.org/10.1111/j.1600-0854.2009.00945.x
[8] Lam, C., Vergnolle, M.A., Thorpe, L., et al. (2010) Functional Interplay between LIS1, NDE1 and NDEL1 in Dynein-Dependent Organelle Positioning. Journal of Cell Science, 123, 202-212.
https://doi.org/10.1242/jcs.059337
[9] Shen, Y., Li, N., Wu, S., et al. (2008) Nudel Binds Cdc42GAP to Modulate Cdc42 Activity at the Leading Edge of Migrating Cells. Developmental Cell, 14, 342-353.
https://doi.org/10.1016/j.devcel.2008.01.001
[10] Iijima, M. and Devreotes, P. (2002) Tumor Suppressor PTEN Mediates Sensing of Chemoattractant Gradients. Cell, 109, 599-610.
https://doi.org/10.1016/S0092-8674(02)00745-6
[11] Liliental, J., Moon, S.Y., Lesche, R., et al. (2000) Genetic Deletion of the Pten Tumor Suppressor Gene Promotes Cell Motility by Activation of Rac1 and Cdc42 GTPases. Current Biology, 10, 401-404.
https://doi.org/10.1016/S0960-9822(00)00417-6
[12] Mester, J. and Eng, C. (2013) When Overgrowth Bumps into Cancer: The PTEN-Opathies. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 163, 114-121.
https://doi.org/10.1002/ajmg.c.31364
[13] Kath, C., Goni-Oliver, P., Müller, R., et al. (2018) PTEN Suppresses Axon Outgrowth by Down-Regulating the Level of Detyrosinated Microtubules. PLoS One, 13, e0193257.
https://doi.org/10.1371/journal.pone.0193257
[14] Wang, S., Ketcham, S.A., Schön, A., et al. (2013) Nudel/NudE and Lis1 Promote Dynein and Dynactin Interaction in the Context of Spindle Morphogenesis. Molecular Biology of the Cell, 24, 3522-3533.
https://doi.org/10.1091/mbc.e13-05-0283
[15] Brandmaier, A., Hou, S., Demaria, S., et al. (2017) PTEN at the Interface of Immune Tolerance and Tumor Suppression. Frontiers in Biology (Beijing), 12, 163-174.
https://doi.org/10.1007/s11515-017-1443-5