植物学研究  >> Vol. 7 No. 6 (November 2018)

Molecular Cloning and Expression Analysis of HbBAM2 from Hevea brasiliensis

DOI: 10.12677/BR.2018.76072, PDF, 下载: 570  浏览: 1,419  国家科技经费支持

作者: 阳江华, 邹 智, 肖小虎, 秦云霞:中国热带农业科学院,橡胶研究所/农业部橡胶树生物学重点开放实验室/省部共建国家 重点实验室培育基地,海南省热带作物栽培生理学重点实验室,海南 海口

关键词: 橡胶树β-淀粉酶HbBAM2胶乳Hevea brasiliensis β-Amylase HbBAM2 Latex Flower

摘要: 在植物中,β-淀粉酶由一多基因家族编码,在不同组织的淀粉降解过程中起重要作用。目前有关种子和叶片的β-淀粉酶研究较多,而对花等其它异养组织则鲜有报道。本研究从橡胶树胶乳中克隆到了一个β-淀粉酶基因(命名为HbBAM2),其编码区长1752 bp,预测编码583个氨基酸。同源比较和亚细胞分析表明HbBAM2定位于叶绿体中。实时荧光定量PCR分析显示,HbBAM2主要在雌花、胶乳和雄花中表达;割胶条件下,HbBAM2的表达水平在新开割树的胶乳中随刀次的增加而明显下调,同时,乙烯利刺激也可部分下调HbBAM2在胶乳中的表达。HbBAM2重组蛋白热稳定性差,以可溶性淀粉和支链淀粉为底物,最适酶活性温度均为25℃,在45℃时已没有酶活性。根据HbBAM2的表达特点和酶学特性我们推测HbBAM2可能通过参与橡胶树花器官淀粉的降解,影响花器官的生长发育,HbBAM2还可能参与了橡胶树胶乳中淀粉的降解,为乳管细胞中的橡胶合成提供能量和碳源。
Abstract: β-amylase which is encoded by a multigene family in plants, plays an important role for starch degradation in different plant tissues. The β-amylase in seeds and leaves already had many re-ports, however, in other heterotrophic tissues such as flowers has seldom been studied. HbBAM2 was cloned from Hevea brasiliensis in this paper, its coding region is 1752 bp, encodes 583 amino acids. By means of homology analysis and subcellular prediction, HbBAM2 may locate in the chloroplast. qRT-PCR displayed the expression patterns of HbBAM2, which was mainly expressed in male flowers, latex and female flowers. HbBAM2 was reduced observably in latex of the virgin trees tapped, and down regulated partly by ethephon treatment. The recombinant protein HbBAM2 was thermal unstable with the optimum temperature 25˚C of substrates, soluble starch or amylopectin, and undetectable activity at 45˚C. It is presumed that HbBAM2 may influence the development of flowers by participating the starch degradation in flowers of Hevea brasiliensis, and HbBAM2 may degrade the starch in latex, providing energy and carbon source for rubber synthesis in laticifer.

文章引用: 阳江华, 邹智, 肖小虎, 秦云霞. 橡胶树HbBAM2基因的克隆与表达分析[J]. 植物学研究, 2018, 7(6): 583-591. https://doi.org/10.12677/BR.2018.76072


[1] Larsson, K. (1991) Structure of the Starch Granule—A Curved Crystal. Acta Chemica Scandinavica, 45, 840-843.
https://doi.org /10.3891/acta.chem.scand.45-0840
[2] Crochet, P., Beauxis-Lagrave, T., Noel, T.R., Parker, R. and Ring, S.G. (2005) Starch Crystal Solubility and Starch Granule Gelatinisation. Carbohydrate Research, 340, 107-113.
https://doi.org /10.1016/j.carres.2004.11.006
[3] Streb, S., Eicke, S. and Zeeman, S.C. (2012) The Simultaneous Abolition of Three Starch Hydrolases Blocks Transient Starch Breakdown in Arabidopsis. Journal of Biological Chemistry, 287, 41745-41756.
https://doi.org /10.1074/jbc.M112.395244
[4] Smith, A.M., Zeeman, S.C. and Smith, S.M. (2005) Starch Degradation. Annual Review of Plant Biology, 56, 73-98.
https://doi.org /10.1146/annurev.arplant.56.032604.144257
[5] Hedhly, A., Vogler, H., Schmid, M.W., Pazmino, D., Gagliardini, V., Santelia, D. and Grossniklaus, U. (2016) Starch Turnover and Metabolism during Flower and Early Embryo Development. Plant Physiology, 172, 2388-2402.
https://doi.org /10.1104/pp.16.00916
[6] Lao, N.T., Schoneveld, O., Mould, R.M., Hibberd, J.M., Gray, J.C. and Kavanagh, T.A. (1999) An Arabidopsis Gene Encoding a Chloroplast-Targeted Beta-Amylase. Plant Journal, 20, 519-527.
https://doi.org /10.1046/j.1365-313X.1999.00625.x
[7] Lu, Y. and Sharkey, T.D. (2004) The Role of Amylomaltase in Maltose Metabolism in the Cytosol of Photosynthetic Cells. Planta, 218, 466-473.
https://doi.org /10.1007/s00425-003-1127-z
[8] Monroe, J.D., Storm, A.R., Badley, E.M., Lehman, M.D., Platt, S.M., Saunders, L.K., Schmitz, J.M. and Torres, C.E. (2014) Beta-Amylase1 and Beta-Amylase3 Are Plastidic Starch Hydrolases in Arabidopsis That Seem to Be Adapted for Different Thermal, pH, and Stress Conditions. Plant Physiology, 166, 1748-1763.
https://doi.org /10.1104/pp.114.246421
[9] Valerio, C., Costa, A., Marri, L., Issakidis-Bourguet, E., Pupillo, P., Trost, P. and Sparla, F. (2011) Thioredoxin-Regulated β-Amylase (BAM1) Triggers Diurnal Starch Degradation in Guard Cells, and in Mesophyll Cells under Osmotic Stress. Journal of Experimental Botany, 62, 545-555.
https://doi.org /10.1093/jxb/erq288
[10] Prasch, C.M., Ott, K.V., Bauer, H., Ache, P., Hedrich, R. and Sonnewald, U. (2015) Ss-Amylase1 Mutant Arabidopsis Plants Show Improved Drought Tolerance Due to Reduced Starch Breakdown in Guard Cells. Journal of Experimental Botany, 66, 6059-6067.
https://doi.org /10.1093/jxb/erv323
[11] Peng, T., Zhu, X., Duan, N. and Liu, J.H. (2014) PtrBAM1, a Beta-Amylase-Coding Gene of Poncirus trifoliata, Is a CBF Regulon Member with Function in Cold Tolerance by Modulating Soluble Sugar Levels. Plant Cell and Environment, 37, 2754-2767.
https://doi.org /10.1111/pce.12384
[12] Fulton, D.C., Stettler, M., Mettler, T., Vaughan, C.K., Li, J., Francisco, P., Gil, M., Reinhold, H., Eicke, S., Messerli, G., Dorken, G., Halliday, K., Smith, A.M., Smith, S.M. and Zeeman, S.C. (2008) Beta-AMYLASE4, a Noncatalytic Protein Required for Starch Breakdown, Acts Upstream of Three Active Beta-Amylases in Arabidopsis Chloroplasts. Plant Cell, 20, 1040-1058.
https://doi.org /10.1105/tpc.107.056507
[13] Visuri, K. and Nummi, M. (1972) Purification and Characterisation of Crystalline β-Amylase from Barley. European Journal of Biochemistry, 28, 555-565.
https://doi.org /10.1111/j.1432-1033.1972.tb01944.x
[14] Kreis, M., Williamson, M., Buxton, B., Pywell, J., Hejgaard, J. and Svendsen, I. (1987) Primary Structure and Differential Expression of β-Amylase in Normal and Mutant Barleys. European Journal of Biochemistry, 169, 517-525.
https://doi.org /10.1111/j.1432-1033.1987.tb13640.x
[15] Mikami, B., Hehre, E.J., Sato, M., Katsube, Y., Hirose, M., Morita, Y. and Sacchettini, J.C. (1993) The 2.0-A Resolution Structure of Soybean Beta-Amylase Complexed with Alpha-Cyclodextrin. Biochemistry, 32, 6836-6845.
https://doi.org /10.1021/bi00078a006
[16] Zeeman, S.C., Umemoto, T., Lue, W.L., Au-Yeung, P., Martin, C., Smith, A.M. and Chen, J. (1998) A Mutant of Arabidopsis Lacking a Chloroplastic Isoamylase Accumulates both Starch and Phytoglycogen. Plant Cell, 10, 1699-1712.
https://doi.org /10.1105/tpc.10.10.1699
[17] 阳江华, 龙翔宇, 秦云霞, 唐朝荣. 橡胶树β-淀粉酶基因HbBAM1的克隆与表达分析[J]. 热带作物学报, 2018(39): 709-715.
[18] Tang, C., Qi, J., Li, H., Zhang, C. and Wang, Y. (2007) A Convenient and Efficient Protocol for Isolating High-Quality RNA from Latex of Hevea brasiliensis (Para Rubber Tree). Journal of Biochemical and Biophysical Methods, 70, 749-754.
https://doi.org /10.1016/j.jbbm.2007.04.002
[19] Li, H., Qin, Y., Xiao, X. and Tang, C. (2011) Screening of Valid Reference Genes for Real-Time RT-PCR Data Normalization in Hevea brasiliensis and Expression Validation of a Sucrose Transporter Gene HbSUT3. Plant Science, 181, 132-139.
https://doi.org /10.1016/j.plantsci.2011.04.014
[20] Long, X., He, B., Gao, X., Qin, Y., Yang, J., Fang, Y., Qi, J. and Tang, C. (2015) Validation of Reference Genes for Quantitative Real-Time PCR during Latex Regeneration in Rubber Tree. Gene, 563, 190-195.
https://doi.org /10.1016/j.gene.2015.03.026
[21] Emanuelsson, O., Brunak, S., von Heijne, G. and Nielsen, H. (2007) Locating Proteins in the Cell Using TargetP, SignalP and Related Tools. Nature Protocols, 2, 953-971.
https://doi.org /10.1038/nprot.2007.131
[22] Lizotte, P.A., Henson, C.A. and Duke, S.H. (1990) Purification and Characterization of Pea Epicotyl β-Amylase. Plant Physiology, 92, 615-621.
https://doi.org /10.1104/pp.92.3.615
[23] Tupy, J. (1973) The Level and Distribution Pattern of Latex Sucrose along the Trunk of Hevea brasiliensis Mull. arg. as Affected by the Sink Region Induced by Latex Tapping. Physiologie Végétale, 11, 1-11.
[24] Tang, C., Huang, D., Yang, J., Liu, S., Sakr, S., Li, H., Zhou, Y. and Qin, Y. (2010) The Sucrose Transporter HbSUT3 Plays an Active Role in Sucrose Loading to Laticifer and Rubber Productivity in Exploited Trees of Hevea brasiliensis (Para Rubber Tree). Plant Cell and Environment, 33, 1708-1720.
https://doi.org /10.1111/j.1365-3040.2010.02175.x