# 一种光量子非定域性实验方法An Experimental Method of Optical Quantum Nonlocality

DOI: 10.12677/APP.2018.812064, PDF, HTML, XML, 下载: 460  浏览: 735  科研立项经费支持

Abstract: Similar to the EPR paradox, to verify and apply the characteristics of the optical quantum, a problem of the interfacial reflectance to transparent medium is presented, and a low budget concise experimental method for recording and analyzing the process of laser pulse crossing multiphase medium is designed. In this method, the laser pulse and PMD camera are controlled synchronously, scattering laser pulse is captured, and the transient image sequence is formed after the raw data is reconstructed.

1. 引言

Figure 1. Transient imaging of laser flight process [6]

Figure 2. PMD camera reconstructed transient images [7]

2. 飞秒激光脉冲在玻璃界面的反射问题

Figure 3. The reflection problem of fem to second laser in glass

3. 实验内容及方法

3.1. 实验场景设计

Figure 4. Information non-localized device

3.2. 实验结果推理

$〈\text{D}|\text{S}〉=〈\text{D}|\text{B}|\text{S}〉+〈\text{D}|\text{T}|\text{S}〉$ (1)

$〈\text{D}|\text{B}|\text{S}〉$$〈\text{D}|\text{T}|\text{S}〉$ 只有相位的不同，该相位差与玻璃厚度δ及光线的波长λ有关，光源S出发到达感光器D的光子的概率的计算公式为：

$\rho ={|〈\text{D}|\text{S}〉|}^{2}=\alpha \left(1-\mathrm{cos}\left(\frac{\delta \text{π}}{\lambda }\right)\right)$ (2)

1) 玻璃厚度在半波长的奇数倍时，反射率最小，而在波长的整数倍时，反射率最大；

2) 反射率随厚度δ的增加呈现出如图5所示的周期性变化。

Figure 5. Model of reflection rate variation with medium thickness

Figure 6. Expected result 1

Figure 7. Expected result 2

3.3. 数据采集与图像重建

① 基于PMD相机各个感光单元可以对输入的不同阶段的光子进行积分的功能，对于PMD相机进行硬件编程并提供灵活的模式选择指令。

② 基于飞秒激光器调制功能，动态调制飞秒激光脉冲的脉冲数及相位。

③ 研制PMD相机和飞秒激光器的同步器。

④ 最后，通过同步器对于PMD相机和飞秒激光器进行控制，采集初始图像数据，并对这些数据进行清理、时间对齐、平滑和视频输出等处理。

4. 结论

 [1] Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Consid-ered Complete? Physical Review, 47, 777. https://doi.org/10.1103/PhysRev.47.777 [2] Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 [3] MacLean, J.-P.W., Donohue, J.M. and Resch, K.J. (2018) Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs. Physical Review Letters, 120, 053601. https://doi.org/10.1103/PhysRevLett.120.053601 [4] Lin, J.Y., Wu, R.H. and Wang, H.M. (2017) Transient Imaging with a Time-of-Flight Camera and Its Applications. Frontiers of Information Technology & Electronic Engineering, 18, 1268-1276. [5] Gariepy, G., Krstajić, N., Henderson, R., et al. (2015) Single-Photon Sensitive Light-in-Fight Imaging. Nature Communications, 6, 6408. https://doi.org/10.1038/ncomms7408 [6] Velten, A., et al. (2013) Femto-Photography: Capturing and Visualizing the Propagation of Light. ACM Transactions on Graphics, 32, 44. [7] Heide, F., Hullin, M.B., Gregson, J. and Heidrich, W. (2013) Low-Budget Transient Imaging Using Photonic Mixer Devices. ACM Transactions on Graphics, 32, 45. [8] Feynman, R. (1985) QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton.