中性粒细胞明胶酶相关脂质运载蛋白在肾损伤中的检测进展
Research Advances of Detection Methods for NGAL in Renal Injury
DOI: 10.12677/MD.2019.91001, PDF, HTML, XML, 下载: 1,045  浏览: 2,481 
作者: 孟萍*:广州市花都区人民医院肾病实验室,南方医科大学附属花都医院,广东 广州
关键词: 中性粒细胞明胶酶相关脂质运载蛋白肾损伤检测方法NGAL Renal Injury Detection Methods
摘要: 中性粒细胞明胶酶相关脂质运载蛋白(NGAL)是一类小分子分泌型糖蛋白,其能迅速灵敏的反映肾脏的损伤程度及恢复过程,成为检测肾损伤的一个新的生物学标志物。因此建立NGAL的检测方法至关重要,目前有多种检测NGAL的方法:免疫印迹法、酶联免疫吸附法等,本文将对NGAL检测方法的原理及相关国内外研究进展的应用和局限进行总结归纳,为临床工作者检测及评估肾损伤程度提供一定的参考,同时也为今后开发新的检测方法提供理论参考和技术支持。
Abstract: Neutrophil gelatinase-associated lipocalin (NGAL) is a type of small molecules that secreted gly-coproteins. It can reflect the degree of renal injury and the process of recovery. It has become a new biological marker of renal injury. So it is very necessary to establish the detection methods of NGAL. There are many ways to detect NGAL, for example Western Blot, ELISA and so on. We will introduce the principle of methods that detecting NGAL and summarize the application and limitations of these detection methods. It will give some reference to evaluate the degree of renal injury and new methods to detect the renal injury.
文章引用:孟萍. 中性粒细胞明胶酶相关脂质运载蛋白在肾损伤中的检测进展[J]. 医学诊断, 2019, 9(1): 1-6. https://doi.org/10.12677/MD.2019.91001

1. 引言

中性粒细胞明胶酶相关脂质运载蛋白(NGAL)是一类小分子分泌型糖蛋白,属于脂质运载蛋白家族中的一员,是Kjeldsen等在1993年研究MMP9时发现的,与明胶酶B即基质金属蛋白酶9 (matrix metalloproteinase-9, MMP-9)密切相关 [1] [2],正常情况下NGAL在肾组织中少量表达,发生缺血性和毒性肾损伤早期时,在开始的两个小时内,尿液和血液中NGAL含量明显升高,肾早于肌酐升高前24~48 h可检测到 [3] [4] [5] [6] [7],NGAL作为一种新的早期肾损伤的敏感标志物越来越受到关注,因此临床上建立快速简便的NGAL检测方法非常重要。

2. NGAL结构及检测方法

2.1. NGAL结构

中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin, NGAL),又称为脂质运载蛋白-2(lipocalin-2, Lcn-2)或噬铁蛋白(siderocalin),人和小鼠NGAL蛋白空间结构是保守的,如图1所示 [8] 。人类NGAL基因位于9号染色体长臂(9q34)上,全长5869 bp,包括7个外显子和6个内含子,其中5'端非转录区为1695 bp、3'端非转录区为178 bp和原始转录区的3696 bp,NGAL蛋白分子量约为25 kDa,是由178个氨基酸残基组成的多肽链,1999年Coles等人指出NGAL蛋白具有一个保守的三级结构:310-螺旋的氨基末端、α-螺旋的羧基末端和β-折叠桶(β-barrel)状的中间结构 [9] [10] 。正常情况下NGAL蛋白在肾组织中低表达,能够刺激肾祖细胞向肾小管上皮细胞分化,以保障肾脏的正常生长发育,但是在急性肾损伤(AKI)早期,血液NGAL (sNGAL)和尿液NGAL (uNGAL)迅速升高 [11],NGAL可作为一种高灵敏度的急性肾损伤早期诊断标志物对于AKI早期诊断具有重要意义,因而建立一种更敏感、特异、高效的检测方法尤为重要。

2.2. NGAL检测方法

1) 蛋白质印迹法:NGAL最初采取的检测方法是蛋白质印迹法又称Western Blot法,是一种将高分辨率凝胶电泳和免疫化学分析技术相结合的杂交技术,其原理是将电泳分离的蛋白质或多肽从聚丙烯酰胺凝胶转移到固相载体上,以共价键形式吸附蛋白质,然后利用固相载体上的蛋白质或多肽作为抗原,与对应的特异性抗体起免疫反应进行检测。经常用于目的蛋白的表达特性分析、组织定位、表达量分析及与其他蛋白的互作。肾损伤时血液和尿液中NGAL表达升高,NGAL与正常相比Western Blot结果增

(a) (b)

Figure 1. The structure of NGAL protein [8] . (a) Human NGAL; (b) Murine NGAL

图1. NGAL蛋白空间结构。(a) 人类NGAL蛋白结构;(b) 鼠类NGAL蛋白结构

多,但是该方法存在操作复杂,检测周期较长,重复性差等问题,现已很少用于临床NGAL的检测。

2) 聚合酶链反应:基于聚合酶链式反应简称PCR (Polymerase Chain Reaction)原理,又称多聚酶链式反应,是在体外将微量DNA进行扩增检测的技术。原理为利用DNA在体外95℃高温时变性成为单链,然后60℃左右引物与单链碱基配对的原则结合,再至DNA聚合酶最是反应温度72℃,沿着5'-3'的方向合成互补链。(real-time quantitative RT-PCR, qRT-PCR),在普通RT-PCR的基础上添加了荧光标记 [12] [13] [14],设计NGAL特异性的引物并通过PCR检测方法,结果显示表达量明显升高。PCR法具有灵敏度高、特异性强、准确性好的特点,但是步骤繁琐、成本较高、对实验室仪器和人员有较高要求,从而限制了该方法在临床上对NGAL的检测。

3) 化学发光法:Chemi Luminescence, CL,是分子发光光谱分析法中的一类,原理为待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系,利用仪器对体系中的化学发光强度进行的检测,从而确定待测物的含量的分析方法。美国雅培公司的Architecti2000SR/I 1000SR全自动免疫分析仪可测定尿液中NGAL(化学发光微粒子免疫分析法),标本量需150 μL,检测周期约28 min [15] [16] [17] [18],因此在肾损伤早期可以检测出微量的NGAL,该法灵敏度高,但测定线性范围较小,检测成本较高且需要特定仪器。

4) 酶联免疫吸附法:enzyme linked immune sorbent assay, ELISA,是通过酶标记抗体或抗原与待测物反应,从而形成抗原-抗体免疫复合物并显色的检测方法,可对患者的血液、尿液等标本进行检测,是目前实验室中应用的较多的一种方法 [19] [20] [21] [22] 。2005年丹麦BioPorto公司首先推出ELISA商品化NGAL检测试剂盒,该方法采用双抗体夹心法,可用于血清(浆)、尿液中的NGAL检测,需要标本量约100 μL,检测周期约4 h,检测限达到0.1 ng/ml,可以检测出血清和尿液中微量的NGAL,且需要样本量少,但只能单一的检测尿液或者血浆、尿液保存条件要求高、操作繁琐、检测周期较长、费用高等缺点,难以满足临床实验室快速、大批量自动化检测的要求,从而限制了其在临床上的应用。

5) 免疫组化法:immunocytochemistry,是利用免疫学基本原理即抗原抗体特异性结合,然后通过化学反应使标记的抗体显色对组织细胞内的抗原进行定位、定性及相对定量的研究 [23] 。包括免疫荧光法、放射免疫法、免疫比浊法、免疫胶体金法等,美国博适公司Triage分析仪利用双抗体夹心免疫荧光层析法可对EDTA抗凝血浆或全血中NGAL进行检测(双抗体夹心免疫荧光层析法) [24] [25],检测周期约为15 min,检测范围为50~2000 ng/ml,该法特异性高,检测所需时间较短,肾损伤早期可以检测出微量的NGAL蛋白,但是该法也需要特定的仪器设备;放射免疫法是利用同位素标记的与未标记的抗原,同抗体发生竞争性抑制反应的方法,研究机体对抗原物质反应的发生、发展和转化规律。放射免疫测定法将放射性的灵敏度与免疫的特异度融合于一炉,既简便准确又灵敏可靠。放射免疫法测定NGAL不受各种干扰因素的影响,所得结果特异型腔、精密度高、成本较低且可大批量测试,但放射法随之带来的是环境污染问题;胶乳增强免疫比浊法是近年来开展的一种高灵敏特异的免疫学检测方法,能够在全自动生化分析仪上进行批量测定。检测原理为待测样本中NGAL与包被在聚苯乙烯胶乳颗粒上的NGAL抗体结合,产生浊度即形成不溶性的免疫复合物,其浊度与样本中的NGAL含量呈一定比例关系,通过与标准品的比较进而计算出样本中NGAL含量。丹麦BioPorto公司在2011年采用胶乳增强免疫比浊法对血液和尿液中的NGAL进行检测 [26] [27],检测周期仅需10 min,检测范围为150~5000 ng/ml,该法操作简单,灵敏度高,无污染,大批量自动化检测,应用范围广,但是抗干扰能力差,试剂成本高,检测范围窄,试剂稳定性不好,特异性低。全自动分析仪价格昂贵,不适合检测少量标本使用。免疫胶体金的原理是将被测抗原的抗体包被到胶体金颗粒的表面,形成金标抗体,此方法利用胶体金良好的理化性质,因胶体金表面颗粒带有负电荷,在碱性条件下通过物理作用将抗体吸附在其表面,且不会影响抗体的生物学特性。NGAL是一种小分子蛋白,胶体金试纸条法可以直接检测到尿液中的NGAL,该法样本获取简便、操作方法快速简便,不需要特殊仪器设备,结果判定直观等优点,适用于床旁检测或急诊检测,能为临床提供快速的参考,有巨大的发展潜力和广阔的应用前景,但此方法只可以定性检测、特异性和精密度稍差。

3. 小结与展望

NGAL的检测在临床上对肾损伤的早期诊断具有重要的参考意义,但是作为肾损伤早期的一个重要的标志物在临床上还未广泛普及,临床上对于NGAL的认识目前还处于初期阶段。临床上NGAL的检测方法及样本都有优缺点,血液标本可以快速获得并即时检测,时间仅需20~30 min,但是血液标本中的NGAL易受其他肾病之外的疾病影响,从而导致NGAL升高;尿液标本虽然肾病之外的疾病影响较小,但是危急重患者往往会出现少尿甚至无尿的状态,从而限制其快速检测,另外利尿剂等也可能影响尿液中NGAL的浓度。随着NGAL的深入研究,NGAL在临床的应用价值会更加普及广泛。

近几年,随着新技术、新方法的不断应用,早发现、早诊断、早治疗是目前临床诊治疾病所追求的目标,传统方法不能及时有效的检测NGAL,所以一些新的NGAL检测方法不断更新,各种方法均有优缺点,目前NGAL尚未有统一的检测方法、通用的标准品或质控品,不同系统之间测定的结果也会存在差异,从而限制了各个实验室之间结果的相通性,不利于临床分析,从而限制了其在临床的广泛应用。因此各实验室应根据自身的实际情况,选择适合于本实验室的最佳检测方法,并标准化参考区间,为临床在AKI诊断、治疗和预后提供更准确的依据。

基金项目

广州市医药卫生科技项目(20171A011349)。

参考文献

[1] Kjeldsen, L., Johnsen, A.H., Sengelov, H. and Borregaard, N. (2001) Isolation and Primary Structure of NGAL, a Novel Protein Associated with Human Neutrophil Gelatinase. The Journal of Biological Chemistry, 268, 10425-10432.
[2] Xu, S.Y., Carlson, M., Engstrom, A., Garcia, R., Peterson, C.G. and Venge, P. (1994) Purification and Characterization of a Human Neutrophil Lipocalin (HNL) from the Secondary Granules of Human Neutrophils. Scandinavian Journal of Clinical and Laboratory Investigation, 54, 365-376.
https://doi.org/10.3109/00365519409088436
[3] Clerico, A., Galli, C., Fortunato, A. and Ronco, C. (2012) Neutrophil Gelatinase-Associated Lipocalin (NGAL) as Biomarker of Acute Kidney Injury: A Review of the Laboratory Characteristics and Clinical Evidences. Clinical Chemistry and Laboratory Medicine (CCLM), 50, No. 9.
https://doi.org/10.1515/cclm-2011-0814
[4] Mishra, J., Dent, C., Tarabishi, R., Mitsnefes, M.M., Ma, Q., Kelly, C., Ruff, S.M., Zahedi, K., Shao, M., Bean, J., Mori, K., Barasch, J. and Devarajan, P. (2005) Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Biomarker for Acute Renal Injury after Cardiac Surgery. The Lancet, 365, 1231.
https://doi.org/10.1016/S0140-6736(05)74811-X
[5] Zappitelli, M., Washburn, K.K., Arikan, A.A., Loftis, L., Ma, Q., Devarajan, P., Parikh, C.R. and Goldstein, S.L. (2007) Urine Neutrophil Gelatinase-Associated Lipocalin Is an Early Marker of Acute Kidney Injury in Critically Ill Children: A Prospective Cohort Study. Critical Care (London, England), 11, R84.
https://doi.org/10.1186/cc6089
[6] Mishra, J. (2003) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology, 14, 2534-2543.
https://doi.org/10.1097/01.ASN.0000088027.54400.C6
[7] Ronco, C. (2007) N-GAL: Diagnosing AKI as Soon as Possible. Critical Care (London, England), 11, 173.
https://doi.org/10.1186/cc6162
[8] Xiao, X., Yeoh, B.S. and Vijay-Kumar, M. (2017) Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annual Review of Nutrition, 37, 103-130.
https://doi.org/10.1146/annurev-nutr-071816-064559
[9] Cowland, J.B. and Borregaard, N. (1997) Molecular Characterization and Pattern of Tissue Expression of the Gene for Neutrophil Gelatinase-Associated Lipocalin from Humans. Genomics, 45, 17-23.
https://doi.org/10.1006/geno.1997.4896
[10] Singer, E., Markó, L., Paragas, N., Barasch, J., Dragun, D., Müller, D.N., Budde, K. and Schmidt-Ott, K.M. (2013) Neutrophil Gelatinase-Associated Lipocalin: Pathophysiology and Clinical Applications. Acta Physiologica, 207, 663.
https://doi.org/10.1111/apha.12054
[11] Schmidt-Ott, K.M., Mori, K., Kalandadze, A., Li, J., Paragas, N., Nicholas, T., Devarajan, P. and Barasch, J. (2006) Neutrophil Gelatinase-Associated Lipocalin-Mediated Iron Traffic in Kidney Epithelia. Current Opinion in Nephrology and Hypertension, 15, 442-449.
https://doi.org/10.1097/01.mnh.0000232886.81142.58
[12] Pacifico, F., Pisa, L., Mellone, S., Cillo, M., Lepore, A. and Leonardi, A. (2018) NGAL Promotes Recruitment of Tumor Infiltrating Leukocytes. Oncotarget, 9, 30761-30772.
https://doi.org/10.18632/oncotarget.25625
[13] Saito, H., Tanaka, T., Tanaka, S., Higashijima, Y., Yamaguchi, J., Sugahara, M., Ito, M., Uchida, L., Hasegawa, S., Wakashima, T., Fukui, K. and Nangaku, M. (2018) Persistent Expression of Neutrophil Gelati-nase-Associated Lipocalin and M2 Macrophage Markers and Chronic Fibrosis after Acute Kidney Injury. Physiological Reports, 6, e13707.
https://doi.org/10.14814/phy2.13707
[14] Han, M., Li, Y., Wen, D., Liu, M., Ma, Y. and Cong, B. (2018) NGAL Pro-tects against Endotoxin-Induced Renal Tubular Cell Damage by Suppressing Apoptosis. BMC Nephrology, 19, 168.
https://doi.org/10.1186/s12882-018-0977-3
[15] Kift, R.L., Messenger, M.P., Wind, T.C., Hepburn, S., Wilson, M., Thompson, D., Smith, M.W., Sturgeon, C., Lewington, A.J., Selby, P.J. and Banks, R.E. (2013) A Comparison of the Analytical Performance of Five Commercially Available Assays for Neutrophil Gelatinase-Associated Lipocalin Using Urine. Annals of Clinical Biochemistry, 50, 236-244.
https://doi.org/10.1258/acb.2012.012117
[16] Lipinski, M., Degowska, M. and Rydzewska, G. (2018) Cystic Fluid Neutrophil Gelatinase-Associated Lipocalin (NGAL) Concentration in Differential Diagnosis of Pancreatic Cystic Lesions: A New Factor Enters the Scene. Gastroenterology Review, 13, 132-136.
https://doi.org/10.5114/pg.2017.68805
[17] Albert, C., Albert, A., Bellomo, R., Kropf, S., Devarajan, P., Westphal, S., Baraki, H., Kutschka, I., Butter, C., Haase, M. and Haase-Fielitz, A. (2018) Urinary Neutrophil Gelatinase-Associated Lipocalin-Guided Risk Assessment for Major Adverse Kidney Events after Open-Heart Surgery. Biomarkers in Medicine, 12, 975.
https://doi.org/10.2217/bmm-2018-0071
[18] Grenier, F.C., Ali, S., Syed, H., Workman, R., Martens, F., Liao, M., Wang, Y. and Wong, P. (2010) Evaluation of the Architect Urine NGAL Assay: Assay Performance, Specimen Handling Requirements and Biological Variability. Clinical Biochemistry, 43, 615-620.
https://doi.org/10.1016/j.clinbiochem.2009.12.008
[19] Voulgaris, A., Archontogeorgis, K., Nena, E., Tsigalou, C., Xanthoudaki, M., Kouratzi, M., Tripsianis, G., Froudarakis, M. and Steiropoulos, P. (2018) Serum Levels of NGAL and Cystatin C as Markers of Early Kidney Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Sleep and Breathing, 1-9.
https://doi.org/10.1007/s11325-018-1677-8
[20] Rotbain Curovic, V., Hansen, T.W., Eickhoff, M.K., von Scholten, B.J., Rein-hard, H., Jacobsen, P.K., Persson, F., Parving, H. and Rossing, P. (2018) Urinary Tubular Biomarkers as Predictors of Kidney Func-tion Decline, Cardiovascular Events and Mortality in Microalbuminuric Type 2 Diabetic Patients. Acta Diabetologica, 55, 1143-1150.
https://doi.org/10.1007/s00592-018-1205-0
[21] Seibert, F.S., Sitz, M., Passfall, J., Haesner, M., Laschinski, P., Buhl, M., Bauer, F., Babel, N., Pagonas, N. and Westhoff, T.H. (2018) Prognostic Value of Urinary Calprotectin, NGAL and KIM-1 in Chronic Kidney Disease. Kidney and Blood Pressure Research, 43, 1255-1262.
https://doi.org/10.1159/000492407
[22] Machado, J.C.Q., Volpe, C.M.O., Vasconcellos, L.S. and Nogueira-Machado, J.A. (2018) Quantification of NGAL in Urine of Endurance Cycling Athletes. Journal of Physical Activity and Health, 15, 679-682.
https://doi.org/10.1123/jpah.2017-0496
[23] Monisha, J., Roy, N., Padmavathi, G., Banik, K., Bordoloi, D., Khwairakpam, A., Arfuso, F., Chinnathambi, A., Alahmadi, T., Alharbi, S., Sethi, G., Kumar, A. and Kunnumakkara, A. (2018) NGAL Is Downregulated in Oral Squamous Cell Carcinoma and Leads to Increased Survival, Proliferation, Migration and Chemoresistance. Cancers, 10, 228.
https://doi.org/10.3390/cancers10070228
[24] Park, S.Y., Eom, J.S., Lee, J.S., Ju, Y.S. and Park, J. (2018) Neutrophil Gelatinase-Associated Lipocalin as a Predictor of Acute Kidney Injury in Patients during Treatment with Colistimethate Sodium. Infection & Chemotherapy, 50, 128-137.
https://doi.org/10.3947/ic.2018.50.2.128
[25] Thorsvik, S., Bakke, I., van Beelen Granlund, A., Røyset, E.S., Damås, J.K., Østvik, A.E. and Sandvik, A.K. (2018) Expression of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in the Gut in Crohn’s Disease. Cell and Tissue Research, 374, 339-348.
https://doi.org/10.1007/s00441-018-2860-8
[26] Xiang, D., Wang, X., Liu, P., Pan, Y., Zhang, Q., Chi, X., Jing, Y., Duan, X., Wei, Q., Wang, J., Li, M. and Wang, C. (2018) Increased NGAL Level Associated with Iron Store in Chronic Kidney Disease with Anemia. Clinical and Experimental Medicine, 18, 563-568.
https://doi.org/10.1007/s10238-018-0507-4
[27] Kunutsor, S.K., Flores-Guerrero, J.L., Kieneker, L.M., Nilsen, T., Hidden, C., Sun-drehagen, E., Seidu, S., Dullaart, R.P.F. and Bakker, S.J.L. (2018) Plasma Neutrophil Gelatinase-Associated Lipocalin and Risk of Cardiovascular Disease: Findings from the PREVEND Prospective Cohort Study. Clinica Chimica Acta, 486, 66-75.
https://doi.org/10.1016/j.cca.2018.07.034