|
[1]
|
郭亚辉. 黄单胞菌属的分类研究进展[J]. 微生物学杂志, 1997, 17(4): 50-51.
|
|
[2]
|
龙海, 李一农, 李芳荣. 四种黄单胞菌的基因芯片检测方法的建立[J]. 生物技术通报, 2011, 1: 186-190.
|
|
[3]
|
A. H. West, A. M. Stock. Histidine kinases and response regula- tor proteins in two-component signaling systems. Trends in Bio- chemical Sciences, 2001, 26(6): 369-376.
|
|
[4]
|
程钢, 喻子牛. 阿维链霉菌双组分信号系统的生物信息学分析[J]. 华中农业大学学报, 2006, 25(6): 630-635.
|
|
[5]
|
M. T. Laub, M. Goulian. Specificity in two-components signal transduction pathways. Annual Review of Genetics, 2007, 41: 121-145.
|
|
[6]
|
H. Ochiai, Y. Inoue, M. Takeya, et al. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequence to its race di- versity. Japan Agricultural Research Quarterly, 2005, 39: 275- 287.
|
|
[7]
|
B. M. Lee, Y. J. Park, D. S. Park, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 2005, 33(2): 577-586.
|
|
[8]
|
S. L. Salzberg, D. D. Sommer, M. C. Schatz, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. Oryzae PXO99A. BMC Genomics, 2008, 9: 204.
|
|
[9]
|
W. Qian, Y. Jia, S. X. Ren, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xan- thomonas campestris pv. campestris. Genome Research, 2005, 15(6): 757-767.
|
|
[10]
|
F. J. Vorhölter, S. Schneiker, A. Goesmann, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in Xanthan biosynthesis. Journal of Biotechnology, 2008, 134(1-2): 33-45.
|
|
[11]
|
A. C. da Silva, J. A. Ferro, F. C. Reinach, et al. Comparison of the genome of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417(6887): 459-463.
|
|
[12]
|
F. Thieme, R. Koebnik, T. Bekel, et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the com- plete genome sequence. Journal of Bacteriology, 2005, 187(21): 7254-7266.
|
|
[13]
|
A. Kato, H. Tanabe and R. Utsumi. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: Identification of extracellular Mg2+-responsive promoters. Journal of Bacteriology, 1999, 181(17): 5516-5520.
|
|
[14]
|
C. Jourlin, A. Bengrine, M. Chippaux, et al. An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N-oxide in Escherichia coli. Molecular Microbiology, 1996, 20(6): 1297-1306.
|
|
[15]
|
V. Sperandio, A. G. Torres and J. B. Kaper. Quorum sensing Escherichia coli regulators B and C (QseBC): A novel two- component regulatory system involved in the regulation of fla- gella and motility by quorum sensing in E. coli. Molecular Microbiology, 2002, 43(3): 809-821.
|
|
[16]
|
S. Leonhartsberger, A. Huber, F. Lottspeich, et al. The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. Journal of Molecular Biology, 2001, 307(1): 93-105.
|
|
[17]
|
S. Iuchi, Z. Matsuda, T. Fujiwara, et al. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Molecular Microbiology, 1990, 4(5): 715-727.
|
|
[18]
|
S. Gallien, E. Perrodou, C. Carapito, et al. Ortho-proteogenom- ics: Multiple proteomes investigation through orthology and a new MS-based protocol. Genome Research, 2009, 19(1): 128- 135.
|
|
[19]
|
M. O. Walderhaug, J. W. Polarek, P. Voelkner, et al. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. Journal of Bacteriology, 1992, 174(7): 2152-2159.
|
|
[20]
|
E. S. Canellakis, A. A. Paterakis, S. C. Huang, et al. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli. Proceedings of the National Academy of Sciences USA, 1993, 90(15): 7129-7133.
|
|
[21]
|
S. Ueno-Nishio, S. Mango, L. J. Reitzer, et al. Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli. Journal of Bacteriology, 1984, 160(1): 379-384.
|
|
[22]
|
M. Hobbs, E. S. Collie, P. D. Free, et al. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Molecular Microbiology, 1993, 7(5): 669-682.
|
|
[23]
|
H. Slater, A. Alvarez-Morales, C. E. Barber, et al. A two-com- ponent system involving an HD-GYP domain protein links cell- cell signalling to pathogenicity gene expression in Xanthomonas campestris. Molecular Microbiology, 2000, 38(5): 986-1003.
|
|
[24]
|
R. A. Welch, V. Burland, G. Plunkett 3rd, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proceedings of the National Academy of Sciences USA, 2002, 99(26): 17020-17024.
|
|
[25]
|
K. Yamamoto, K. Hirao, T. Oshima, et al. Functional characteri- zation in vitro of all two-component signal transduction systems from Escherichia coli. The Journal of Biological Chemistry, 2005, 280(2): 1448-1456.
|
|
[26]
|
S. P. Wang, P. L. Sharma, P. V. Schoenlein, et al. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Proceedings of the National Academy of Sciences USA, 1993, 90(2): 630-634.
|
|
[27]
|
M. K. Phillips-Jones, C. N. Hunter. Cloning and nucleotide sequence of regA, a putative response regulator gene of Rhodo- bacter sphaeroides. FEMS Microbiology Letters, 1994, 116(3): 269-275.
|
|
[28]
|
P. Liljeström, I. Laamanen and E. T. Palva. Structure and expression of the ompB operon, the regulatory locus for the outer membrane porin regulon in Salmonella typhimurium LT-2. The Journal of Biological Chemistry, 1988, 201(4): 663-673.
|
|
[29]
|
P. S. Aguilar, A. M. Hernandez-Arriaga and L. E. Cybulski, Molecular basis of thermosensing: A two-component signal transduction thermometer in Bacillus subtilis. The EMBO Jour- nal, 2001, 20(7): 1681-1691.
|
|
[30]
|
K. C. Yeh, S. H. Wu, J. T. Murphy, et al. A cyanobacterial phytochrome two-component light sensory system. Science, 1997, 277(5331): 1505-1508.
|
|
[31]
|
T. Mascher, S. L. Zimmer, T. A. Smith, et al. Antibiotic-induc- ible promoter regulated by the cell envelope stress-sensing two- component system LiaRS of Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2004, 48(8): 2888-2896.
|
|
[32]
|
S. Ma, D. J. Wozniak and D. E. Ohman. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. The Journal of Biological Chemistry, 1997, 272(29): 17952-17960.
|
|
[33]
|
I. T. Paulsen, L. Banerjei, G. S. Myers, et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science, 2003, 299(5615): 2071-2074.
|
|
[34]
|
F. Reinhart, A. Huber, R. Thiele, et al. Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing Staphylococcus carnosus. Journal of Bacteriology, 2010, 192(1): 86-93.
|
|
[35]
|
T. Baba, F. Takeuchi, M. Kuroda, et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet, 2002, 359(9320): 1819-1827.
|
|
[36]
|
R. S. Rabin, V. Stewart. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. Journal of Bacteriology, 1993, 175(11): 3259-3268.
|
|
[37]
|
M. Kanehisa, S. Goto, Y. Sato, et al. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Research, 2012, 40: D109-D114.
|
|
[38]
|
M. E. Smoot, K. Ono, J. Ruscheinski, et al. Cytoscape 2.8: New features for data integration and network visualization. Bioin- formatics, 2011, 27(3): 431-432.
|
|
[39]
|
S. W. Lee, K. S. Jeong, S. W. Han, et al. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. Journal of Bacteriology, 2008, 190(6): 2183-2197.
|
|
[40]
|
Y. W. He, C. Boon, L. Zhou, et al. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two- component regulatory system RavS/RavR. Molecular Microbiology, 2009, 71(6): 1464-1476.
|
|
[41]
|
W. Qian, Z. J. Han and C. Z. He. Two-component signal trans- duction systems of Xanthomonas spp: A lesson from genomics. Molecular Plant-Microbe Interactions, 2008, 21(2): 151-161.
|
|
[42]
|
M. O. Andrade, M. C. Alegria, C. R. Guzzo, et al. The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quo- rum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv. citri. Molecular Microbiology, 2006, 62(2): 537-551.
|
|
[43]
|
G. M. Pao, M. H. Saier Jr. Response regulators of bacterial signal transduction systems: Selective domain shuffling during evolution. Journal of Molecular Evolution, 1995, 40(2): 136- 154.
|
|
[44]
|
Y. W. He, C. Wang, L. Zhou, et al. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris in- volve either phosphorelay or receiver domain-protein interaction. The Journal of Biological Chemistry, 2006, 281(44): 33414- 33421.
|
|
[45]
|
K. Stephenson, Y. Yamaguchi and J. A. Hoch. The mechanism of action of inhibitors of bacterial two-component signal transduc- tion systems. The Journal of Biological Chemistry, 2000, 275(49): 38900-38904.
|
|
[46]
|
J. J. Hilliard, R. M. Goldschmidt, L. Licata, et al. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrobial Agents and Chemotherapy, 1999, 43(7): 1693-1699.
|