计算生物学  >> Vol. 2 No. 2 (June 2012)

黄单胞菌双组分信号转导系统的生物信息学分析
Bioinformatics Analysis of Two-Component Singal Transduction Systems of Xanthomonas

DOI: 10.12677/hjcb.2012.22002, PDF, HTML, XML, 下载: 3,348  浏览: 14,076  国家自然科学基金支持

作者: 胡 芬, 邹 霞, 梅 寒, 唐 清, 何 进*:华中农业大学生命科学技术学院,农业微生物学国家重点实验室

关键词: 黄单胞菌双组分系统调控网络致病性生物信息学Xanthomonas; Two-Component System (TCS); Regulatory Network; Pathogenicity; Bioinformatics

摘要:

双组分信号转导系统是原核生物感知与响应刺激的重要代谢调节机制,广泛参与细菌的各种生理生化反应。本文采用生物信息学手段,利用多序列对比、系统进化树分析、跨膜区分析、二级结构预测等,对已完成全基因组测序的8株黄单胞菌中的双组分进行系统分类、结构分析和功能预测,初步构建了部分双组分信号转导系统的调控网络关系图揭示了黄单胞菌致病性与双组份之间的联系,并初步阐明了黄单胞菌种间的进化关系,同时也为寻找新的药物靶标奠定了基础。

Abstract: Two-component signal transduction systems (TCSs) represent the dominant sense-response mechanisms to regulate a wide array of physiological pathways in prokaryotes. TCSs can regulate the majority of physiological processes, including bacterial growth, chemotaxis, osmoregulation, sporulation, biosynthesis of secondary metabolites, virulence of pathogens, biofilm formation, etc. In this paper, we predicted all the TCS genes and comprehensively analyzed their biological functions in the whole genomes of 8 Xanthomonas strains. We depicted a systematic classification of these proteins, then analyzed their structures and putative biological functions by sequence alignment, multiple sequence alignment, phylogenetic tree analysis, Hidden Markov Model (HMM), secondary structure prediction etc, and finally constructed the regulatory networks in which some TCSs involved. Our research revealed the relationship between TCS genes and the pathogenicity of Xanthomonas, as well as the possible evolutionary relationship; furthermore, our results could lay the foundation for exploring new drug targets.

 

文章引用: 胡芬, 邹霞, 梅寒, 唐清, 何进. 黄单胞菌双组分信号转导系统的生物信息学分析[J]. 计算生物学, 2012, 2(2): 11-25. http://dx.doi.org/10.12677/hjcb.2012.22002

参考文献

[1] 郭亚辉. 黄单胞菌属的分类研究进展[J]. 微生物学杂志, 1997, 17(4): 50-51.
[2] 龙海, 李一农, 李芳荣. 四种黄单胞菌的基因芯片检测方法的建立[J]. 生物技术通报, 2011, 1: 186-190.
[3] A. H. West, A. M. Stock. Histidine kinases and response regula- tor proteins in two-component signaling systems. Trends in Bio- chemical Sciences, 2001, 26(6): 369-376.
[4] 程钢, 喻子牛. 阿维链霉菌双组分信号系统的生物信息学分析[J]. 华中农业大学学报, 2006, 25(6): 630-635.
[5] M. T. Laub, M. Goulian. Specificity in two-components signal transduction pathways. Annual Review of Genetics, 2007, 41: 121-145.
[6] H. Ochiai, Y. Inoue, M. Takeya, et al. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequence to its race di- versity. Japan Agricultural Research Quarterly, 2005, 39: 275- 287.
[7] B. M. Lee, Y. J. Park, D. S. Park, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 2005, 33(2): 577-586.
[8] S. L. Salzberg, D. D. Sommer, M. C. Schatz, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. Oryzae PXO99A. BMC Genomics, 2008, 9: 204.
[9] W. Qian, Y. Jia, S. X. Ren, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xan- thomonas campestris pv. campestris. Genome Research, 2005, 15(6): 757-767.
[10] F. J. Vorhölter, S. Schneiker, A. Goesmann, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in Xanthan biosynthesis. Journal of Biotechnology, 2008, 134(1-2): 33-45.
[11] A. C. da Silva, J. A. Ferro, F. C. Reinach, et al. Comparison of the genome of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417(6887): 459-463.
[12] F. Thieme, R. Koebnik, T. Bekel, et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the com- plete genome sequence. Journal of Bacteriology, 2005, 187(21): 7254-7266.
[13] A. Kato, H. Tanabe and R. Utsumi. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: Identification of extracellular Mg2+-responsive promoters. Journal of Bacteriology, 1999, 181(17): 5516-5520.
[14] C. Jourlin, A. Bengrine, M. Chippaux, et al. An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N-oxide in Escherichia coli. Molecular Microbiology, 1996, 20(6): 1297-1306.
[15] V. Sperandio, A. G. Torres and J. B. Kaper. Quorum sensing Escherichia coli regulators B and C (QseBC): A novel two- component regulatory system involved in the regulation of fla- gella and motility by quorum sensing in E. coli. Molecular Microbiology, 2002, 43(3): 809-821.
[16] S. Leonhartsberger, A. Huber, F. Lottspeich, et al. The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. Journal of Molecular Biology, 2001, 307(1): 93-105.
[17] S. Iuchi, Z. Matsuda, T. Fujiwara, et al. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Molecular Microbiology, 1990, 4(5): 715-727.
[18] S. Gallien, E. Perrodou, C. Carapito, et al. Ortho-proteogenom- ics: Multiple proteomes investigation through orthology and a new MS-based protocol. Genome Research, 2009, 19(1): 128- 135.
[19] M. O. Walderhaug, J. W. Polarek, P. Voelkner, et al. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. Journal of Bacteriology, 1992, 174(7): 2152-2159.
[20] E. S. Canellakis, A. A. Paterakis, S. C. Huang, et al. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli. Proceedings of the National Academy of Sciences USA, 1993, 90(15): 7129-7133.
[21] S. Ueno-Nishio, S. Mango, L. J. Reitzer, et al. Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli. Journal of Bacteriology, 1984, 160(1): 379-384.
[22] M. Hobbs, E. S. Collie, P. D. Free, et al. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Molecular Microbiology, 1993, 7(5): 669-682.
[23] H. Slater, A. Alvarez-Morales, C. E. Barber, et al. A two-com- ponent system involving an HD-GYP domain protein links cell- cell signalling to pathogenicity gene expression in Xanthomonas campestris. Molecular Microbiology, 2000, 38(5): 986-1003.
[24] R. A. Welch, V. Burland, G. Plunkett 3rd, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proceedings of the National Academy of Sciences USA, 2002, 99(26): 17020-17024.
[25] K. Yamamoto, K. Hirao, T. Oshima, et al. Functional characteri- zation in vitro of all two-component signal transduction systems from Escherichia coli. The Journal of Biological Chemistry, 2005, 280(2): 1448-1456.
[26] S. P. Wang, P. L. Sharma, P. V. Schoenlein, et al. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Proceedings of the National Academy of Sciences USA, 1993, 90(2): 630-634.
[27] M. K. Phillips-Jones, C. N. Hunter. Cloning and nucleotide sequence of regA, a putative response regulator gene of Rhodo- bacter sphaeroides. FEMS Microbiology Letters, 1994, 116(3): 269-275.
[28] P. Liljeström, I. Laamanen and E. T. Palva. Structure and expression of the ompB operon, the regulatory locus for the outer membrane porin regulon in Salmonella typhimurium LT-2. The Journal of Biological Chemistry, 1988, 201(4): 663-673.
[29] P. S. Aguilar, A. M. Hernandez-Arriaga and L. E. Cybulski, Molecular basis of thermosensing: A two-component signal transduction thermometer in Bacillus subtilis. The EMBO Jour- nal, 2001, 20(7): 1681-1691.
[30] K. C. Yeh, S. H. Wu, J. T. Murphy, et al. A cyanobacterial phytochrome two-component light sensory system. Science, 1997, 277(5331): 1505-1508.
[31] T. Mascher, S. L. Zimmer, T. A. Smith, et al. Antibiotic-induc- ible promoter regulated by the cell envelope stress-sensing two- component system LiaRS of Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2004, 48(8): 2888-2896.
[32] S. Ma, D. J. Wozniak and D. E. Ohman. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. The Journal of Biological Chemistry, 1997, 272(29): 17952-17960.
[33] I. T. Paulsen, L. Banerjei, G. S. Myers, et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science, 2003, 299(5615): 2071-2074.
[34] F. Reinhart, A. Huber, R. Thiele, et al. Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing Staphylococcus carnosus. Journal of Bacteriology, 2010, 192(1): 86-93.
[35] T. Baba, F. Takeuchi, M. Kuroda, et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet, 2002, 359(9320): 1819-1827.
[36] R. S. Rabin, V. Stewart. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. Journal of Bacteriology, 1993, 175(11): 3259-3268.
[37] M. Kanehisa, S. Goto, Y. Sato, et al. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Research, 2012, 40: D109-D114.
[38] M. E. Smoot, K. Ono, J. Ruscheinski, et al. Cytoscape 2.8: New features for data integration and network visualization. Bioin- formatics, 2011, 27(3): 431-432.
[39] S. W. Lee, K. S. Jeong, S. W. Han, et al. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. Journal of Bacteriology, 2008, 190(6): 2183-2197.
[40] Y. W. He, C. Boon, L. Zhou, et al. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two- component regulatory system RavS/RavR. Molecular Microbiology, 2009, 71(6): 1464-1476.
[41] W. Qian, Z. J. Han and C. Z. He. Two-component signal trans- duction systems of Xanthomonas spp: A lesson from genomics. Molecular Plant-Microbe Interactions, 2008, 21(2): 151-161.
[42] M. O. Andrade, M. C. Alegria, C. R. Guzzo, et al. The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quo- rum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv. citri. Molecular Microbiology, 2006, 62(2): 537-551.
[43] G. M. Pao, M. H. Saier Jr. Response regulators of bacterial signal transduction systems: Selective domain shuffling during evolution. Journal of Molecular Evolution, 1995, 40(2): 136- 154.
[44] Y. W. He, C. Wang, L. Zhou, et al. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris in- volve either phosphorelay or receiver domain-protein interaction. The Journal of Biological Chemistry, 2006, 281(44): 33414- 33421.
[45] K. Stephenson, Y. Yamaguchi and J. A. Hoch. The mechanism of action of inhibitors of bacterial two-component signal transduc- tion systems. The Journal of Biological Chemistry, 2000, 275(49): 38900-38904.
[46] J. J. Hilliard, R. M. Goldschmidt, L. Licata, et al. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrobial Agents and Chemotherapy, 1999, 43(7): 1693-1699.