T-RFLP技术在森林土壤微生物多样性研究中的应用
Application of the T-RFLP Technique in Microbial Communities Diversity Research
DOI: 10.12677/BP.2012.23020, PDF, HTML, XML, 下载: 3,232  浏览: 10,685  国家自然科学基金支持
作者: 隋 心*:中国科学院沈阳应用生态研究所;中国科学院研究生院,北京 ;丁 舒:长春大学生物科学技术学院;韩士杰*, 丁凤英:中国科学院沈阳应用生态研究所;黄乃伟*:长白山保护开发区林业局
关键词: 真菌细菌T-RFLPFungi; Bacterial; T-RFLP
摘要: 土壤微生物在物质循环转化中具有重要的作用,与森林植被类型、土壤理化性质存在密切的关系。森林土壤微生物多样性及其变化在一定程度上反映了土壤环境的生产力和稳定性,对森林演替,土壤生境改善等有重要意义。末端限制性酶切片段长度多态性分析(T-RFLP)技术具有快捷、高效和可重复性高等优点。本文简要介绍T-RFLP技术的原理和特点,分析这一技术的局限性和优化方法。以及该技术在森林土壤微生物多样性研究中的应用现状展望该技术的发展前景以期能为今后这一领域的研究提供科学依据。
Abstract: Soil microorganism plays an important role in recycling and transformation of material as well as has a close relationship with the type of forest types, soil physical and chemical. The microbial diversity can indicate the station of the forest environment, and play a key function in succession and restoration. Recently, more and more published papers focus on this area. The T-RFLP approach serves as a fast, efficient and reproducible tool. In this review, we introduced the principle and character of T-RFLP technique, analysis of the limitation and optimization method, demonstration the prospects for the development of the technology, in order to provide a scientific basis for future research in this area.
文章引用:隋心, 丁舒, 韩士杰, 黄乃伟, 丁凤英. T-RFLP技术在森林土壤微生物多样性研究中的应用[J]. 生物过程, 2012, 2(3): 123-127. http://dx.doi.org/10.12677/BP.2012.23020

参考文献

[1] [1] E. A. Stockdale, P. Brookes. Detection and quantification of the soil microbial biomass—Impacts on the management of agricul- tural soils. The Journal of Agricultural Science, 2006, 144(4): 285-302.
[2] M. Waldrop, T. Balser and M. Firestone. Linking microbial com- munity composition to function in a tropical soil. Soil Biology and Biochemistry, 2000, 32(13): 1837-1846.
[3] F. Skinner, P. Jones and J. Mollison. A comparison of a direct and a plate-counting technique for the quantitative estimation of soil micro-organisms. Journal of General Microbiology, 1952, 6(3-4): 261.
[4] R. I. Amann, W. Ludwig and K. H. Schleifer. Phylogenetic identification and in situ detection of individual microbial cells with- out cultivation. Mi-crobiological Reviews, 1995, 59(1): 143-169.
[5] N. R. Pace. A molecular view of microbial diversity and the biosphere. Science, 1997, 276(5313): 734-740.
[6] S. Rölleke, et al. Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-ampli- fied gene fragments coding for 16S rRNA. Journal of Microbiological Methods, 1999, 36(1): 107-114.
[7] S. G. Acinas, F. Rodrı́guez-Valera and C. Pedrós-Alió. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. Fems Microbiology Ecology, 1997, 24(1): 27-40.
[8] E. Llobet-Brossa, R. Ros-selló-Mora and R. Amann. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Applied and Environmen- tal Microbiology, 1998, 64(7): 2691-2696.
[9] X. Wu, R. Conrad. Functional and structural response of a cellulose-degrading methanogenic microbial community to multiple aeration stress at two different temperatures. Environmental Microbiology, 2001, 3(6): 355-362.
[10] M. Zarei, et al. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 2010, 158(8): 2757- 2765.
[11] T. Lukow, P. F. Dunfield and W. Liesack. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agri-cultural soil planted with transgenic and non-transgenic potato plants. Fems Microbiology Ecology, 2000, 32(3): 241-247.
[12] C. Winderl, et al. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Applied and Environmental Microbiology, 2008, 74(3): 792-801.
[13] 宋洪宁等. 环境因素对东平湖沉积物细菌群落结构的影响[J]. 微生物学报, 2010, 8: 1065-1071.
[14] S. Malchair, et al. Diversity-function relationship of ammonia-oxidizing bacteria in soils among functional groups of grass- land species under climate warming. Applied Soil Ecology, 2010, 44(1): 15-23.
[15] J. L. Faulwetter, et al. Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering, 2009, 35(6): 987-1004.
[16] 袁三青, et al. T-RFLP 技术分析油藏微生物多样性[J]. 微生物学报, 2007, 47(2): 290-294.
[17] 卢莉琼, 徐亚同, 梁俊. 分子生物学方法在微生物多样性及微生物生态研究中的应用[J]. 应用与环境生物学报, 2004, 10(6): 826-830.
[18] D. Gordon, S. Giovannoni. Detection of stratified microbial po- pulations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Applied and Environmental Microbiology, 1996, 62(4): 1171-1177.
[19] F. V. Wintzingerode, U. B. Göbel and E. Stackebrandt. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 1997, 21(3): 213-229.
[20] M. Krsek, E. Wellington. Comparison of different methods for the isolation and purification of total community DNA from soil. Journal of Microbiological Methods, 1999, 39(1): 1-16.
[21] A. M. Osborn, E. R. B. Moore and K. N. Timmis. An evaluation of termin-al-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology, 2000, 2(1): 39-50.
[22] G. Braker, et al. Community structure of denitrifiers, Bacteria, and Archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Applied and Environmental Microbiology, 2001, 67(4): 1893-1901.
[23] M. Egert, M. W. Friedrich. Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restric- tion fragment length polymorphism analysis of microbial com- munity structure. Applied and Environmental Microbiology, 2003, 69(5): 2555-2562.
[24] I. Head, J. Saunders and R. Pickup. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology, 1998, 35(1): 1-21.
[25] V. Farrelly, F. A. Rainey and E. Stackebrandt. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Applied and Environmental Microbiology, 1995, 61(7): 2798-2801.
[26] J. E. M. Watts, et al. Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environmen- tal Microbiology, 2001, 3(11): 710-719.
[27] M. Eschenhagen, M. Schuppler and I. Röske. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Research, 2003, 37(13): 3224-3232.
[28] T. L. Marsh, et al. Beginning a molecular analysis of the eukaryal community in activated sludge. Water Science and Technology, 1998, 37(4): 455-460.
[29] N. J. A. Curlevski, et al. Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal com- munities. Soil Biology and Biochemistry, 2010, 42(1): 14-20.
[30] T. Korkama, A. Pakkanen and T. Pennanen. Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytologist, 2006, 171(4): 815-824.
[31] 马万里. 土壤微生物多样性研究的新方法[J]. 土壤学报, 2004, 41(1): 103-107.
[32] J. Rich, et al. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Applied and Environmental Microbiology, 2003, 69(10): 5974-5982.
[33] 周慧. 云南高黎贡山国家自然保护区土壤微生物多样性研究[D]. 湖南农业大学, 2008.
[34] 王金成. 黄土高原子午岭天然油松林土壤微生物生态学研究[D]. 陕西师范大学, 2010.