HJCB  >> Vol. 2 No. 3 (September 2012)

    肿瘤蛋白MDMX与抑制剂PMI作用机制的分子动力学研究
    Molecular Dynamics Insight into the Interaction Mechanism of Inhibitor PMI with MDMX

  • 全文下载: PDF(926KB) HTML    PP.27-33   DOI: 10.12677/hjcb.2012.23003  
  • 下载量: 2,895  浏览量: 13,236   国家自然科学基金支持

作者:  

程伟渊:山东交通学院办公室;
梁志强,王 伟,伊长虹,王克彦,李洪云,陈建中:山东交通学院理学院

关键词:
p53-MDMX相互作用分子动力学MM-PBSA结合自由能p53-MDMX Interaction; Molecular Dynamics; MM-PBSA; Binding Free Energy

摘要:

恢复抑癌蛋白p53的功能已经成为一种治疗癌症的新途径。本文采用分子动力学模拟和MM-PBSA方法计算了抑制剂PMI与肿瘤蛋白MDMX的结合自由能。结果表明范德华相互作用驱动了PMIMDMX的结合。同时也使用基于残基对的自由能分解方法计算了残基残基相互作用,结果不仅表明PMI5个残基能与MDMX产生强烈的相互作用,而且也表明CH-CHCH-ππ-π相互作用主导了PMIMDMX疏水性裂缝中的结合。我们期望这个研究能为抑制p53-MDMX相互作用药物的研发提供理论上的启示。

Restoration of p53 function is considered to be a new therapeutic strategy for anti-cancers. Molecular Dynamics (MD) simulations coupled with Molecular Mechanics/Possion-Boltzman Surface Area (MM-PBSA) method were used to study the mechanism of the PMI-MDMX interaction. The results show that van der walls energy drives the PMI-MDMX interaction. Calculations based on residue-residue interaction were also performed, and the results not only suggest that five residues of PMI can produce strong interaction with MDMX, but also the CH-CH, CH-π, π-π interactions predominate the binding of PMI in the hydrophobic cleft of MDMX. We expect that this study can contribute significantly to the designs of the potent inhibitors inhibiting the PMI-MDMX interaction.

文章引用:
程伟渊, 梁志强, 王伟, 伊长虹, 王克彦, 李洪云, 陈建中. 肿瘤蛋白MDMX与抑制剂PMI作用机制的分子动力学研究[J]. 计算生物学, 2012, 2(3): 27-33. http://dx.doi.org/10.12677/hjcb.2012.23003

参考文献

[1] S. P. Wang, W. L. Wang, Y. L. Chang, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology, 2009, 11(6): 694-704.
[2] K. H. Vousden, D. P. Lane. p53 in health and disease. Nature Reviews Molecular Cell Biology, 2007, 8(4): 275-283.
[3] A. Shmueli, M. Oren. Regulation of p53 by Mdm2: Fate is in the numbers. Molecular Cell, 2004, 13(1): 4-5.
[4] S. Uldrijan, W. J. Pannekoek and K. H. Vousden. An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. The EMBO Journal, 2006, 26(1): 102-112.
[5] G. M. Popowicz, A. Czarna and S. Wolf. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle, 2010, 9(6): 1104-1111.
[6] T. L. Joseph, A. Madhumalar, C. J. Brown, et al. Differential binding of p53 and nutlin to MDM2 and MDMX: Computational studies. Cell Cycle, 2010, 9(6): 1167-1181.
[7] J. Chen, D. Zhang, Y. Zhang, et al. Computational studies of difference in binding modes of peptide and non-peptide inhibitors to MDM2/MDMX based on molecular dynamics simulations. International Journal of Molecular Sciences, 2012, 13(2): 2176- 2195.
[8] M. Pazgier, M. Liu, G. Zou, et al. Structural basis for high- affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proceedings of the National Academy of Sciences, 2009, 106(12): 4665-4670.
[9] Y. F. M. Ramos, R. Stad, J. Attema, et al. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Research, 2001, 61(5): 1839-1842.
[10] J. Phan, Z. Li, A. Kasprzak, et al. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. The Journal of Biological Chemistry, 2010, 285(3): 2174-2183.
[11] A. Czarna, G. M. Popowicz, A. Pecak, et al. High affinity interaction of the p53 peptide-analogue with human Mdm2 and Mdmx. Cell Cycle, 2009, 8(8): 1176-1184.
[12] K. Ding, Y. Lu, Z. Nikolovska-Coleska, et al. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. Journal of Medicinal Chemistry, 2006, 49(12): 3432-3435.
[13] J. K. Murray, S. H. Gellman. Targeting protein-protein interactions: Lessons from p53/MDM2. Biopolymers, 2007, 88(5): 657-686.
[14] B. L. Grasberger, T. Lu, C. Schubert, et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. Journal of Medicinal Chemistry, 2005, 48(4): 909-912.
[15] J. Chen, S. Zhang, X. Liu, et al. Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: Free energy calculation and molecular dynamic simulation. Journal of Molecular Modeling, 2010, 16(3): 459-468.
[16] E. L. Wu, K. L. Han and J. Z. H. Zhang. Selectivity of neutral/ weakly basic P1 group inhibitors of thrombin and trypsin by a molecular dynamics study. Chemistry—A European Journal, 2008, 14(28): 8704-8714.
[17] T. Hou, R. Yu. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: Mechanism for binding and drug resistance. Journal of Medicinal Chemistry, 2007, 50(6): 1177-1188.
[18] J. Chen, J. Wang, B. Xu, et al. Insight into mechanism of small molecule inhibitors of the MDM2-p53 Interaction: Molecular dynamics simulation and free energy analysis. Journal of Molecular Graphics and Modelling, 2011: 46-53.
[19] J. Wang, P. Morin, W. Wang, et al. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Journal of the American Chemical Society, 2001, 123(22): 5221-5230.
[20] J. Wang, R. M. Wolf, J. W. Caldwell, et al. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25(9): 1157-1174.
[21] W. Wang, P. A. Kollman. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model1. Journal of Molecular Biology, 2000, 303(4): 567-582.
[22] J. Chen, M. Yang, G. Hu, et al. Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: Molecular dynamics simulations and free energy calculations. Journal of Molecular Modeling, 2009, 15(10): 1245-1252.
[23] J. Z. Chen, M. Y. Yang, C. H. Yi, et al. Molecular dynamics simulation and free energy calculations of symmetric fluoro- substituted diol-based HIV-1 protease inhibitors. Journal of Molecular Structure: THEOCHEM, 2009, 899(1-3): 1-8.
[24] C. H. Yi, J. Z. Chen, S. H. Shi, et al. A computational analysis of pyrazole-based inhibitors binding to Hsp90 using molecular dynamics simulation and the MM-GBSA method. Molecular Simulation, 2010, 36(6): 454-460.
[25] D. A. Case, T. A. Darden, T. E. Cheatham III, et al. AMBER 12. University of California, San Francisco, 2012.
[26] Y. Duan, C. Wu, S. Chowdhury, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 2003, 24(16): 1999-2012.
[27] T. G. Coleman, H. C. Mesick and R. L. Darby. Numerical integration. Annals of Biomedical Engineering, 1977, 5(4): 322- 328.
[28] W. Cheng, J. Chen, Z. Liang, et al. A computational analysis of interaction mechanisms of peptide and non-peptide inhibitors with MDMX based on molecular dynamics simulation. Compu- tational and Theoretical Chemistry, 2012, 984: 43-50.
[29] 程伟渊, 梁志强, 张庆刚等. p53-MDM2相互作用的分子力学和动力学研究[J]. 原子与分子物理学报, 2012, 29(3): 393- 399.
[30] Y. Ding, Y. Mei and J. Z. H. Zhang. Quantum mechanical studies of residue-specific hydrophobic interactions in p53-MDM2 binding. The Journal of Physical Chemistry B, 2008, 112(36): 11396- 11401.