镗削颤振主动控制的研究现状
Fundamental Philosophy and Status of Boring Chatter Active Control
DOI: 10.12677/MET.2012.13004, PDF, HTML, 下载: 3,944  浏览: 15,229  国家科技经费支持
作者: 王大中, 吴淑晶:上海工程技术大学机械工程学院
关键词: 镗削颤振机理主动控制Boring; Chatter Mechanism; Active Control
摘要: 镗削颤振是金属切削过程中产生的不稳定现象,成为影响和制约零件加工表面质量及加工效率提高的主要因素。深入开展切削颤振形成的机理研究,是实现切削颤振抑制的理论核心之一,具有重要的理论价值。本文总结了颤振形成的机理和主动控制的基本思路,回顾了近年关于镗削颤振及保证稳定性的主要研究成果,并根据近年来预测控制研究的发展趋势,指出高效主动控制逐渐成为这一领域研究的热点
Abstract: Boring chatter instability in the metal cutting process turn out to be the main factor affecting which constrains the surface quality and processing efficiency. Studying cutting chatter mechanism and its variation in flutter is one of the theoretical core of cutting chatter suppression with an important theoretical value. In this paper, the fundamental philosophy in the study on cutting chatter mechanism and active control is summarized. The main theoretical works on boring chatter active control with guaranteed stability and performance are reviewed. From the trend of recent study, we point out that the high efficient active control will be the focus of the afterward study in this area.
文章引用:王大中, 吴淑晶. 镗削颤振主动控制的研究现状[J]. 机械工程与技术, 2012, 1(3): 19-23. http://dx.doi.org/10.12677/MET.2012.13004

参考文献

[1] M. M. Sadek, S. A. Tobias. Reduction of machine tool vibration. Tran-scations of ASME, Journal of Applied Mechanics, 1973, 1: 128-135.
[2] B. Matthijs, S. Maarten. Control relevant blind identification of disturbances with application to a multivariable active vibration isolation platform. IEEE Transactions on Control Systems Tech- nology, 2010, 18(2): 393-404.
[3] E. Abele, H. Hanselka, F. Haase, D. Schlote and A. Schiffler. Development and design of an active work piece holder driven by piezo actuators. Production Engi-neering, Research and Development, 2008, 2: 437-442.
[4] S. S. Abuthakeer, P. V. Mohanram and G. M. Kumar. Prediction and control of cutting tool vibration in cnc lathe with anova and ann. International Journal of Lean Thinking, 2011, 2(1): 1-23.
[5] B. Dibakar, N. James. A study on the effects of kalman filter on performance of ipmc-based active vibration control scheme. IEEE Transactions on Control Sys-tems Technology, 2010, 18(6): 1315-1324.
[6] T. Alwarsamy, S. Vetrivel and S. Nadarajan. Theoretical cutting force prediction and analysis of boring process using mathcad. World Applied Sciences Journal, 2011, 12(10): 1814-1818.
[7] D. Lorenzo, A. Andreas and M. N. Cornel. Design and dynamic characterization of composite material dampers for parting-off tools. Journal of Machine Engineering, 2010, 10(2): V57-V70.
[8] Y. Morimoto, Y. Ichida, R. Sato and K. Takaha-shi. Estimation of dynamic characteristics of machine structure by pseudo inverse matrix. SICE 2004 Annual Conference, 2004, 2: 1005-1010.
[9] K. P. Dahal, H. Yu. Intelligent learning algorithms for active vibration control. IEEE Transactions on Systems, Man, and Cy- bernetics, 2007, 37(5): 1022-1033.
[10] B. K. Min, G. O’Neal, Y. Koren and Z. Pasek. A smart boring tool for process control. Mecha-tronics, 2002, 12: 1097-1114.
[11] S. Balamurugan, T. Alwarsamy. Machine tool chatter suppression using magneto-rheological fluid damper through artificial neural networks. European Journal of Scien-tific Research, 2011, 59(4): 547-560.
[12] H. Mihaita, C. Eugen, S. Neculai-Eugen, B. Mihai, C. Dragoş and F. Claudiu. Experimental research on a wideband passive dynamic absorber useful to increase the boring bars stability. International Journal of Modern Manufactur-ing Technologies, 2011, 3(2): 49-54.
[13] E. Budak, E. Ozlu. Analyti-cal modeling of chatter stability in turning and boring operations: A multi-dimensional approach. Annals of the CIRP, 2007, 56(1): 401-404.
[14] B. M. Imani, N. Z. Yussefian. Dynamic simulation of boring process. International Journal of Machine Tools & Manufacture, 2009, 49(14): 1096-1103.
[15] H. Moradi, F. Bakhtiari-Nejad and M. R. Movahhedy. Tuneable vibration absorber design to suppress vibra-tions: An application in boring manufacturing process. Journal of Sound and Vibration, 2008, 318(1-2): 93-108.
[16] N. Z. Yussefian, B. Moetakef-Imani and H. El-Mounayri. The prediction of cutting force for boring process. International Journal of Machine Tools and Manu-facture, 2008, 48(12-13): 1387-1394.
[17] J. R. Pratt, A. H. Nayfeh. Chatter control and stability analysis of a cantilever boring bar under regenerative cutting conditions. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 2011, 359: 759-792.
[18] A. Henrik, S. Tatiana, C. Ingvar and H. Lars. On the development of a simple and robust active control system for boring bar vibration in industry. International Journal of Acoustics and Vibration, 2007, 12(4): 139-152.
[19] 王民, 区炳显, 昝涛, 费仁元. 镗杆颤振控制技术发展综述[J]. 北京工业大学学报, 2011, 37(8): 1143-1147.
[20] 胡李波, 王民, 李刚. 动力减振镗杆的减振性能研究[J]. 机械设计与制造, 2009, 1: 131-133.
[21] M. Wang, T. Zan and Y. Yang. Design and implementation of nonlinear TMD for chatter suppression: An application in turn- ing processes. International Jour-nal of Machine Tools & Manu- facture, 2010, 50(5): 474- 479.
[22] D. Q. Mei, T. R. Kong, J. S. Albert and Z. C. Chen. Magnetor- heological fluid-controlled boring bar for chatter suppression. Journal of Materials Processing Technology, 2009, 209: 1861- 1870.
[23] 梅德庆, 孔天荣, 陈子辰. 基于神经元S型传递函数的磁流变阻尼器力学模型研究[J]. 功能材料, 2006, 37(5): 776-779.
[24] 张春良, 梅德庆, 陈子辰. 基于遗传算法的振动主动控制系统反馈参数优化[J]. 中国机械工程, 2009, 20(24): 2912-2916.
[25] 张春良, 梅德庆, 陈子辰. 振动主动控制及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2011.
[26] 江浩, 龙新华, 孟光. 铣削主动减振平台设计及控制[J]. 上海交通大学学报, 2008, 42(5): 724-729.
[27] 江浩, 龙新华, 孟光. 侧铣加工振动与表面轮廓形成[J]. 上海交通大学学报, 2008, 42(5): 730-734.
[28] 李中伟, 龙新华, 孟光. 基于Magnus-Gaussian截断的铣削系统稳定性的半离散分析法[J]. 振动与冲击, 2009, 28(5): 69- 73.
[29] H. Jiang, X. H. Long and G. Meng. Study of the correlation between sur-face generation and cutting vibrations in peripheral milling. Journal of Materials Processing Technology, 2008, 208 (1-3): 229-238.
[30] Y. Q. Yiqing, Q. Liu and M. Wang. Optimization of the tuned mass damper for chatter suppression in turning. Chinese Journal of Mechanical Engineering, 2010, 23(6): 717-724.
[31] 邓志党, 高峰, 刘献栋, 杜发荣. 磁流变阻尼器力学模型的研究现状[J]. 振动与冲击, 2006, 25(3): 121-126.
[32] 刘鹏, 孔繁森. 基于压电执行器的切削振动主动控制实验研究[J]. 现代制造工程, 2008, 2: 88-90.
[33] 孔繁森, 刘鹏, 刘春颖. 基于压电智能结构的镗削振动主动控制的仿真与实验研究[J]. 振动与冲击, 2010, 29(3): 142- 146.
[34] 王建宏, 王道波. 子空间预测控制算法在主动噪声振动中的应用[J]. 振动与冲击, 2011, 30(10): 129-135.
[35] 李占卫, 郑建国, 李治军. 磁流变阻尼器间隙结构对阻尼力的影响[J]. 磁性材料及器件, 2011, 42(5): 48-63.
[36] 宋志鹏, 王贵成, 王树林. 高速切削振动的形成及其控制[J]. 工具技术, 2008, 42(10): 94-96.
[37] 任违, 孔金星, 岳晓斌, 任玥. 减振镗杆动态特性的对比实验分析[J]. 工具技术, 2010, 44(11): 45-48.
[38] 谢斌斌, 赵淑军, 李萍奎, 马术文, 丁国富. 基于虚拟样机的动力减振镗杆设计研究[L]. 机械科学与技术, 2010, 29(10): 1408-1416.
[39] 陈刚. 大型电机主轴内孔加工的镗杆谐响应分析[J]. 机械科学与技术, 2008, 27(12): 1648-1650.
[40] 秦柏, 邵俊鹏. 基于ADAMS的动力减振镗杆径向跳动频域分析及参数优化[J]. 系统仿真学报, 2008, 20(8): 2177-2181.
[41] 杨吉茂, 辛舟. 深孔镗杆在推镗和拉镗时的ANSYS受力分析[J]. 机械设计与制造, 2011, 7: 128-129.
[42] H. Kesson, T. Smirnova and I. Claesson. On the development of a simple and robust active control system for bor-ing bar vibration in industry. International Journal of Acoustics and Vibrations, 2007, 12(4): 139-152.
[43] M. Ishitobi, M. Nishi and K. Nakasaki. Nonlinear adaptive model following control for a 3-DOF tandern-rotor model helicopter. Control Engineering Practice, 2010, 18(8): 936-943.
[44] S. J. Wu, S. Okubo and D. Z. Wang. Design of model following control system for nonlinear descriptor system in discrete time. Kybernetika, 2008, 44(4): 546-556.
[45] 赵立华, 大久保重范. 不变零点の安定配置を使った非线形ディスクリプタシステムのモデル追从形制御系(基于不变零点安定性的广义非线性系统的模型跟踪控制系统)[C]. 日本电气学会论文志, 2009, 129(3): 424-431.
[46] I. Salim. Observer-based control of a class of time-delay nonlinear systems having triangular structure. Automatica, 2011, 47(2): 388-394.
[47] 王大中, 大久保重范. 线形中立型むだ时间システムのモデル追从形制御系の设计(时滞线性中立型系统的模型跟踪控制设计)[C]. 日本电气学会论文志, 2008, 128(11): 1660-1667.
[48] D. Z. Wang, S. J. Wu and S. Okubo. The state pre-dictive model following control system for the linear time-delays. International Journal of Automation and Computing, 2009, 6(2): 186-191.
[49] D. Z. Wang, S. J. Wu and S. Okubo. Design of the state predict- tive model following control system with time-delay. Interna- tional Journal of Applied Mathematics and Computer Science, 2009, 19(2): 247-254.