AAM  >> Vol. 8 No. 5 (May 2019)

    一类奇异p-Laplace方程解的存在性问题
    Existence of Solution for One Class of Singular p-Laplacian Problem

  • 全文下载: PDF(601KB)    PP.977-983   DOI: 10.12677/AAM.2019.85111  
  • 下载量: 201  浏览量: 281   国家自然科学基金支持

作者:  

李 磊:广西师范大学数学与统计学院,广西 桂林

关键词:
上下解奇异p-LaplaceSub and Super Solution Singular p-Laplacian Equations

摘要:

本文利用上下解方法讨论一类奇异p-Laplace方程的边值问题解的存在性。

Sub and Super Solution, Singular, p-Laplacian Equations

文章引用:
李磊. 一类奇异p-Laplace方程解的存在性问题[J]. 应用数学进展, 2019, 8(5): 977-983. https://doi.org/10.12677/AAM.2019.85111

参考文献

[1] Alves, C.O. and Covei, D.P. (2015) Existence of Solution for a Class of Nonlocal Elliptic Problem via Sub-Supersolution Method. Nonlinear Analysis: Real World Applications, 23, 1-8.
https://doi.org/10.1016/j.nonrwa.2014.11.003
[2] Coclite, M.M. and Palmieri, G. (1989) On a Singular Nonlinear Dirichlet Problem. Commu- nications in Partial Differential Equations, 14, 1315-1327.
https://doi.org/10.1080/03605308908820656
[3] Zhang, Z. and Yu, J. (2000) On a Singular Nonlinear Dirichlet Problem with a Convection Term. SIAM Journal on Mathematical Analysis, 32, 916-927.
https://doi.org/10.1137/S0036141097332165
[4] Dravek, P. and Hernandez, J. (2001) Existence and Uniqueness of Positive Solutions for Some Quasilinear Elliptic Problems. Nonlinear Analysis: Theory, Methods Applications, 44, 189- 204.
https://doi.org/10.1016/S0362-546X(99)00258-8
[5] Evans, L.C. (1998) Partial Differential Equations. American Mathematical Society, New York.
[6] 王明新. 索伯列夫空间[M]. 北京: 高等教育出版社, 2013.
[7] Gilbarg, D. and Trudinger, N.S. (1977) Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-96379-7
[8] 张恭庆, 林源渠. 泛函分析讲义[M]. 北京: 北京大学出版社, 1987.