应用均温板于非均匀热物理条件
Applied Vapor Chambers on Non-uniform Thermo Physical Conditions
摘要: 均温板(Vapor Chamber)为一两相流热传组件,具有将热量均匀扩散传递的功能,非常适合应用在不均匀发热的热源条件上。本文主要即是探讨均温板应用于非均匀发热的电子组件,如CPU、GPU及LED等,其扩散传递热量的能力。首先利用本文所开发的计算程序VCEK_ML V1及BaseResistance_ML,先行估算均温板的扩散传递热量的能力,再使用窗口软件VCTM V1.0配合热性能实验,分析整个均温板模块在非均匀热源物理条件的热流现象,最后可藉由热显像仪的温度分布结果验证均温板扩散热量的传递能力。结果显示,均温板模块可有效改善非均匀热物理条件的热分布现象,比纯铜及纯铝板佳。
Abstract: A vapor chamber is a two-phase heat transfer components with a function of spreading and transferring uniformly heat capacity so that it is ideal for use in non-uniform heating conditions. This article mainly researches in vapor chamber application on non-uniform heating electronic components, such as CPU, GPU, and LED, with its ability to spread and heat transfer. Firstly, the calculation program developed in this paper named as VCEK_ML V1 and BaseResistance_ML employ to estimating the ability for spreading and transferring heat amount of vapor chamber. Then the Windows software VCTM V1.0 with the thermal-performance experiment analyzes the thermal phenomena of the Vapor Chamber module in the thermo physical conditions of non-uniform heat source, and finally, a thermal imager can be employed and proved the heat spreading capability of vapor chamber through the temperature distributions. The results showed that, a vapor chamber module can effectively improve the thermo physical conditions of non-uniform heat distribution phenomenon, which is better than pure copper and pure aluminum plates.
文章引用:王荣昌. 应用均温板于非均匀热物理条件[J]. 应用物理, 2011, 1(1): 20-26. http://dx.doi.org/10.12677/app.2011.11003

参考文献

[1] Z. J. Zuo, P. M. Dussinger. Heat pipe vapor chamber cold plate mod-eling, fabrication and testing. ASME HEAT TRANSFER DIV PUBL HTD, 1998, 361(3): 281-286.
[2] J. C. Lin, J. C. Wu, C. T. Yen, et al. Fabrication and performance analysis of metallic micro heat spreader for CPU. Shanghai: 13th International Heat Pipe Conference (13th IHPC), 2004.
[3] I. Sauciuc, G. Chrysler, R. Mahajan, et al. Spreading in the heat sink base: phase change systems or solid metals? IEEE Transactions on components and packaging technologies, 2002, 25(4): 621-628.
[4] S. S. Hsieh, R. Y. Lee, J. C. Shyu, et al. Thermal per-formance of flat vapor chamber heat spreader. Energy Conversion and Management, 2008, 49(6): 1774-1784.
[5] Y. Xuan, Y. Hong and Q. Li. Investigation on transient behaviors of flat plate heat pipes. Ex-perimental Thermal and Fluid Science, 2004, 28(2-3): 249-255.
[6] J. -C. Wang. Development of vapour chamber-based VGA thermal module. International Journal of Numerical Methods for Heat & Fluid Flow, 2010, 20(4): 416-428.
[7] H. S. Huang, Y. C. Chiang, C. K. Huang, et al. Experimental Investigation of Vapor Chamber Module Applied to High -Power Light-Emitting Diodes. Hua Experimental Heat Transfer, 2009, 22(1): 26-38.
[8] J. -C. Wang. Investigation on Application of LED to Energy-saving Lamp. Combustion Quarterly 4, 2009, 18(1): 3-11.
[9] M. Arik, C. Becker, S. Weaver, et al. Thermal Management of LEDs: Package to System [EB/OL].
[10] http://wenku.baidu.com/view/9599960f7cd184254b353595.htm
[11] l, 2011-03-06.
[12] C. F. Beaton, G. F. Hewitt. Physical Property Data for the Design Engineer. New York: Hemisphere, 1989.
[13] J. -C. Wang, R. -T. Wang, T. -L. Chang, et al. Development of 30 Watt High-Power LEDs Vapor Chamber-Based Plate. Interna-tional Journal of Heat and Mass Transfer, 2010, 53(19/20): 3900-4001.
[14] J. -C. Wang, C. -L. Huang. Vapor Chamber in High Power LEDs. Taipei: HHHHHMicrosystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th InternationalHHHHH, 2010.