|
[1]
|
Beck, J.S., Vartuli, J.C., Roth, W.J., et al. (1992) A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 114, 10834-10843. [Google Scholar] [CrossRef]
|
|
[2]
|
Zhao, D.Y., Feng, J.L., Huo, Q.S., et al. (1998) Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 279, 548-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhao, D.Y., Huo, Q.S., Feng, J.L., et al. (1998) Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 120, 6024-6036. [Google Scholar] [CrossRef]
|
|
[4]
|
Benezra, M., Penate-Medina, O., Zanzonico, P.B., et al. (2011) Multimodal Silica Nanoparticles Are Effective Cancer-Targeted Probes in a Model of Human Melanoma. Journal of Clinical Investigation, 121, 2768-2780. [Google Scholar] [CrossRef]
|
|
[5]
|
Hu, X.X., Hao, X.H., Wu, Y., et al. (2013) Multifunctional Hybrid Silica Nanoparticles for Controlled Doxorubicin Loading and Release with Thermal and pH Dual Response. Journal of Ma-terials Chemistry B, 1, 1109-1118. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, H.W., Liu, Y.Q., Yao, S., et al. (2018) Selective Recognization of Dicyandiamide in Bovine Milk by Mesoporous Silica SBA-15 Supported Dicyandiamide Imprinted Polymer Based on Surface Molecularly Imprinting Technique. Food Chemistry, 240, 1262-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Feng, J.N., She, X.J., He, X.Y., et al. (2018) Synthesis of Magnetic Graphene/Mesoporous Silica Composites with Boronic Acid-Functionalized Pore-Walls for Selective and Efficient Residue Analysis of Aminoglycosides in Milk. Food Chemistry, 239, 612-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Huang, L., Wu, J., Liu, M.Y., et al. (2017) Direct Surface Grafting of Mesoporous Silica Nanoparticles with Phospholipid Choline-Containing Copolymers through Chain Transfer Free Radical Polymerization and Their Controlled Drug Delivery. Journal of Colloid and Interface Science, 508, 396-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Vallet-Regí, M., Rámila, A., Del Real, R.P., et al. (2001) A New Property of MCM-41: Drug Delivery System. Chemistry of Materials, 13, 308-311. [Google Scholar] [CrossRef]
|
|
[10]
|
Hong, S.H. and Choi, Y. (2017) Mesoporous Silica-Based Nanoplatforms for the Delivery of Photodynamic Therapy Agents. Journal of Pharmaceutical Investigation, 48, 3-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, Y., Zhao, Q.F., Han, N., et al. (2015) Mesoporous Silica Nanoparticles in Drug Delivery and Biomedical Applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11, 313-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rosenholm, J.M., Zhang, J., Linden, M., et al. (2016) Mesoporous Silica Nanoparticles in Tissue Engineering—A Perspective. Nanomedicine, 11, 391-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Watermann, A. and Brieger, J. (2017) Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. Nanomaterials, 7, 189. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bagheri, E., Ansari, L., Abnous, K., et al. (2018) Silica Based Hybrid Materials for Drug Delivery and Bioimaging. Journal of Controlled Release, 277, 57-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Saroj, S. and Rajput, S.J. (2018) Tailor-Made pH-Sensitive Polyacrylic acid Functionalized Mesoporous Silica Nanoparticles for Efficient and Controlled Delivery of Anti-Cancer Drug Etoposide. Drug Development and Industrial Pharmacy, 44, 1-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yan, T., Cheng, J., Liu, Z., et al. (2017) pH-Sensitive Me-soporous Silica Nanoparticles for Chemo-Photodynamic Combination Therapy. Colloids and Surfaces B: Biointerfaces, 161, 442-448. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, X.L., Sun, H., Hu, J., et al. (2017) Transferrin Gated Mesoporous Silica Nanoparticles for Redox-Responsive and Targeted Drug Delivery. Colloids and Surfaces B: Bioin-terfaces, 152, 77-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Caillol, S., Ming, T.Z., Richter, R.D., et al. (2014) Fighting Global Warming by Climate Engineering: Is the Earth Radiation Management and the Solar Radiation Management Any Option for Fighting Climate Change? Renewable and Sustainable Energy Reviews, 31, 792-804. [Google Scholar] [CrossRef]
|
|
[19]
|
Hu, Y.N. and Cheng, H.F. (2013) Water Pollution during China’s Industrial Transition. Environmental Development, 8, 57-73. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhang, S.H., Li, Y.Q., Zhang, T.X., et al. (2015) An Integrated Environmental Decision Support System for Water Pollution Control Based on TMDL—A Case Study in the Beiyun River Watershed. Journal of Environmental Management, 156, 31-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dindar, M.H., Yaftian, M.R. and Rostamnia, S. (2015) Po-tential of Functionalized SBA-15 Mesoporous Materials for Decontamination of Water Solutions from Cr(VI), As(V) and Hg(II) Ions. Journal of Environmental Chemical Engineering, 3, 986-995. [Google Scholar] [CrossRef]
|
|
[22]
|
Bao, Y.X., Yan, X.M., Du, W., et al. (2015) Application of Amine-Functionalized MCM-41 Modified Ultrafiltration Membrane to Remove Chromium (VI) and Copper (II). Chemical Engineering Journal, 281, 460-467. [Google Scholar] [CrossRef]
|
|
[23]
|
Kang, J.K., Kim, J.H., Kim, S.B., et al. (2015) Ammo-nium-Functionalized Mesoporous Silica MCM-41 for Phosphate Removal from Aqueous Solutions. Desalination and Water Treatment, 57, 10839-10849. [Google Scholar] [CrossRef]
|
|
[24]
|
Yuan, N., Liu, Z.W., Wang, L.Y., et al. (2018) Rattle-Type Diamine-Functionalized Mesoporous Silica Sphere for Carbon Dioxide Adsorption. Journal of Nano Research, 53, 13-21. [Google Scholar] [CrossRef]
|
|
[25]
|
Uehara, Y., Karami, D. and Mahinpey, N. (2019) Amino Acid Ionic Liquid-Modified Mesoporous Silica Sorbents with Remaining Surfactant for CO2 Capture. Adsorption, 25, 703-716. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, Z., Wei, X., Yao, Y., et al. (2017) Conformal Coating of Co/N-Doped Carbon Layers into Mesoporous Silica for Highly Efficient Catalytic Dehydroge-nation-Hydrogenation Tandem Reactions. Small, 13, Article ID: 1702243. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Barroso-Martín, I., Elisa, M., Aldo, T., et al. (2018) Au and AuCu Nanoparticles Supported on SBA-15 Ordered Mesoporous Titania-Silica as Catalysts for Methylene Blue Photodegra-dation. Materials, 11, 890. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, X., He, Y.P., Ma, Y.L., et al. (2018) Architecture Yolk-Shell Structured Mesoporous Silica Nanospheres for Catalytic Applications. Dalton Transactions, 47, 9072-9078. [Google Scholar] [CrossRef]
|