理论数学  >> Vol. 1 No. 3 (October 2011)

Hilbert C*-模框架的和
Sums of Frames in Hilbert C*-Modules

DOI: 10.12677/pm.2011.13033, PDF, HTML, 下载: 2,808  浏览: 6,941  国家自然科学基金支持

作者: 王海丽, 李鹏同

关键词: Hilbert C*-模框架Bessel序列框架和框架算子
Hilbert Modules; Frames; Bessel Sequences; Sums of Frames; Frame Operators

摘要: 本文研究了Hilbert C*-模框架的和,得到了模框架(或Bessel序列)之和还是模框架的几个结果。
Abstract: In this paper, we investigate the sums of Hilbert C*- module frames. Several results on the sums of modular frames (Bessel sequences) being still frames are given.

文章引用: 王海丽, 李鹏同. Hilbert C*-模框架的和[J]. 理论数学, 2011, 1(3): 167-171. http://dx.doi.org/10.12677/pm.2011.13033

参考文献

[1] I. Kaplansky. Modules over operator algebras. American Journal of Mathematics, 1953, 75(4): 839-853.
[2] E. C. Lance. Hilbert modules: A toolkit for operator algebraists. Cambridge: Cambridge University Press, 1995.
[3] R. J. Duffin, A. C. Schaeffer. A class of nonharmonic Fourier series. Transaction of American Mathematical Society, 1952, 72: 341-366.
[4] D. Han, D. Larson. Frames, bases and group representations. Memoirs of the American Mathematical Society, 2000, 147: 697.
[5] P. G. Casazza, G. Kutyniok and S. Li. Fusion frames and distributed processing. Applied and Computational Harmonic Analysis, 2008, 25(1): 114-132.
[6] V. Kaftal, D. Larson and S. Zhang. Operator-valued frames. Transaction of American Mathematical Society, 2009, 361: 6349-6385.
[7] W. Sun. G-frames and G-rises bases. Journal of Mathematical Analysis and Applications, 2006, 332(1): 437-452.
[8] M. Frank, D. Larson. A module frame concept for Hilbert -modules. Contemporary Mathematics, 1999, 247: 207-233.
[9] M. Frank, D. Larson. Modular frames for Hilbert modules and symmetric approximation of frames. Proceeding SPIE, 2000, 4119: 325-336.
[10] M. Frank, D. Larson. Frames in Hilbert modules and algebras. Journal of Operator Theory, 2002, 48: 273-314.
[11] W. Jing, D. Han and R. N. Mohapatra. Structured parseval frames in Hilbert modules. Contemporary Mathematics, 2006, 414: 275-287.
[12] S. Obeidat, S. Samarah, P. G. Casazza and J. C. Tremain. Sums of Hilbert space frames. Journal of Mathematical Analysis and Applications, 2009, 351(2): 579-585
[13] G. G. Kasparov. Hilbert modules: The theorems of Stinespring and Voiculescu. Journal of Operator Theory, 1980, 4: 133-150.
[14] W. Jing. Frames in Hilbert modules. The University of Central Florida Orlando, 2006.