分数布朗单驱动的一类随机偏微分方程的弱解
Weak Solution for Stochastic Partial Differential Equations Driven by a Fractional Brownian Sheet withMonotone Drift
DOI: 10.12677/AAM.2019.811206, PDF, 下载: 743  浏览: 2,652 
作者: 夏晓宇, 闫理坦:东华大学理学院,上海
关键词: 分数布朗单随机偏微分方程弱解Fractional Brownian Sheet Stochastic Partial Differential Equation Weak Solution
摘要:

本文旨在研究分数布朗单驱动的一类随机偏微分方程的弱解问题。首先,BH,H′={BH,H′,z∈[0,T]2}为一个分数布朗单,其中Hurst指数为(H,H′),我们考虑随机偏微分方程

并限定系数b ,使它满足所谓的局部线性增长条件。随后证明了这类随机偏微分方程弱解的存在唯一性。

In this note,we will study weak solution of hyperbolic stochastic partial differential Equation (1). Where BH,H′={BH,H′,z∈[0,T]2} is a Fractional Brownian sheet and b is under the so-called locally linear growth condition.

Then we prove the existence and uniqueness of the weak solution of this kind of stochastic difffferential equation.

文章引用:夏晓宇, 闫理坦. 分数布朗单驱动的一类随机偏微分方程的弱解[J]. 应用数学进展, 2019, 8(11): 1766-1774. https://doi.org/10.12677/AAM.2019.811206

参考文献

[1] Nualart, D. and Ouknine, Y. (2002) Regularization of Differential Equations by Fractional Noise. Stochastic Processes and Their Applications, 102, 103-116.
https://doi.org/10.1016/S0304-4149(02)00155-2
[2] Nualart, D. and Ra˘scanu, A. (2002) Differential Equations Driven by Fractional Brownian Motion. Collectanea Mathematica, 53, 55-81.
[3] Erraoui, M., Nualart, D. and Ouknine, Y. (2003) Hyperbolic Stochastic Partial Differential Equations with Additive Fractional Brownian Sheet. Stochastics and Dynamics, 3, 121-139.
https://doi.org/10.1142/S0219493703000681
[4] Decreusefond, L. and üstunel, A.S. (1999) Stochastic Analysis of the Fractional Brownian Motion. Potential Analysis, 10, 177-214.
https://doi.org/10.1023/A:1008634027843
[5] Alos, E., Mazet, O. and Nualart, D. (2001) Stochastic Calculus with Respect to Gaussian Processes. The Annals of Probability, 29, 766-801.
https://doi.org/10.1214/aop/1008956692
[6] Erraoui, M. and Ouknine, Y. (1994) Approximations des quations differentielles stochastiques par des quations àretard. Stochastics and Stochastic Reports, 46, 53-62.
https://doi.org/10.1080/17442509408833869
[7] Cairoli, R. and Walsh, J. (1975) Stochastic Integrals in the Plane. Acta Mathematica, 134, 111-183.
https://doi.org/10.1007/BF02392100
[8] Biagini, F., Hu, Y., Øksendal, B. and Zhang, T. (2008) Stochastic Calculus for Fractional Brownian Motion and Applications. In: Probability and Its Application, Springer, Berlin.
https://doi.org/10.1007/978-1-84628-797-8
[9] Hu, Y.Z. (2005) Integral Transformations and Anticipative Calculus for Fractional Brownian Motions. In: Memoirs of the American Mathematical Society, Vol. 175, AMS, Providence, RI.
https://doi.org/10.1090/memo/0825
[10] Mishura, Y.S. (2008) Stochastic Calculus for Fractional Brownian Motion and Related Pro- cesses. In: Lecture Notes in Mathematics, Vol. 1929, Springer-Verlag Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-75873-0
[11] Nourdin, I. (2012) Selected Aspects of Fractional Brownian Motion. Springer Verlag, New York.
https://doi.org/10.1007/978-88-470-2823-4
[12] Nualart, D. (2006) Malliavin Calculus and Related Topics. 2nd Edition, Springer, Heidelberg, New York.
[13] Tudor, C.A. (2013) Analysis of Variations for Self-Similar Processes. Springer, Heidelberg, New York.
https://doi.org/10.1007/978-3-319-00936-0
[14] Samko, S.G., Kilbas, A.A. and Mariachev, O.I. (1993) Fractional Integrals and Derivatives. Gordon and Breach, Philadelphia.