分数阶微分方程积分边值问题正解的唯一性
Uniqueness of Positive Solutions for the Fractional Differential Equation with Integral Boundary Value Problem
DOI: 10.12677/PM.2020.101002, PDF, HTML, XML, 下载: 760  浏览: 1,097  科研立项经费支持
作者: 卢云雪, 王 颖*, 吴英昭, 李大伟:临沂大学数学与统计学院,山东 临沂
关键词: 分数阶微分方程正解积分边值问题不动点定理Fractional Differential Equation Positive Solutions Integral Boundary Value Problem The Fixed Point Theorem
摘要: 分数阶微分是可以处理任意阶数的微分、积分,是整数阶微积分的推广。本文主要研究分数阶微分方程积分边值问题的正解,应用Banach不动点定理,得到了方程正解的唯一性。
Abstract: Fractional calculus is a kind of differential and integral which can deal with any order. It is a gen-eralization of integral calculus. In this paper, we mainly study the positive solutions for the frac-tional differential equation with integral boundary value problem. By using the Banach fixed point theorem, we obtain the uniqueness of the positive solutions of the equation.
文章引用:卢云雪, 王颖, 吴英昭, 李大伟. 分数阶微分方程积分边值问题正解的唯一性[J]. 理论数学, 2020, 10(1): 6-10. https://doi.org/10.12677/PM.2020.101002

1. 引言

分数阶微分方程在科学和工程领域的应用,特别是在流变学、电子网络、流体力学、粘弹性以及化学物理学等方面的应用,使得对分数阶微分方程的研究已经变得越来越重要,已成为人们研究的热点 [1] - [9],本文研究分数阶微分方程积分边值问题(BVP):

{ D 0 + α x ( t ) + λ f ( t , x ( t ) ) = 0 , 0 < t < 1 , x ( 0 ) = x ( 0 ) = = x ( n 2 ) = 0 , D 0 + α 1 x ( t ) = 0 1 h ( t ) x ( t ) d A ( t ) (1.1)

其中 n 1 < α n , n 2 中, D 0 + α 是Riemann-Liouville微分。 λ > 0 是参数, h : ( 0 , 1 ) [ 0 , + ) 是连续的并且 h L 1 ( 0 , 1 ) 0 1 h ( s ) x ( s ) d A ( s ) 表示具有广义测度的Riemann-Stieltjes积分, A : ( 0 , 1 ) ( , + ) 是有界变差函数, 0 1 h ( t ) t α 1 d A ( t ) < Γ ( α ) f : [ 0 , 1 ] × [ 0 , + ) [ 0 , + ) 是连续函数。

2. 预备知识

定义2.1: [10] [11] (Riemann-Liouville) α 阶积分定义为

I 0 + α x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 x ( s ) d s ,

其中 n 1 < α n ,n为整数。

定义2.2: [10] [11] (Riemann-Liouville) α 阶导数定义为

D 0 + α x ( t ) = 1 Γ ( n α ) ( d d t ) n 0 t ( t s ) n α 1 x ( s ) d s ,

其中 n 1 < α n ,n为整数。

引理2.1: [10] [11] 若 α > 0 x L ( 0 , 1 ) D 0 + α x L ( 0 , 1 ) ,则

I 0 + α D 0 + α x ( t ) = x ( t ) + c 1 t α 1 + c 2 t α 2 + + c n t α n ,

其中 c i ( , + ) i = 1 , 2 , , n n 1 < α n

引理2.2:假设 y C ( 0 , 1 ) L 1 ( 0 , 1 ) ,则分数阶微分方程

{ D 0 + α x ( t ) + y ( t ) = 0 , t ( 0 , 1 ) , n 1 < α n , n 2 , x ( 0 ) = x ( 0 ) = = x ( n 2 ) = 0 , D 0 + α 1 x ( 1 ) = 0 1 h ( t ) x ( t ) d A ( t ) (2.1)

有解

x ( t ) = 0 G ( t , s ) y ( s ) d s ,

其中

G ( t , s ) = G 0 ( t , s ) + G 1 ( t , s ) , (2.2)

G 0 ( t , s ) = 1 Γ ( α ) { t α 1 ( t s ) α 1 , 0 s t 1 , t α 1 , 0 t s 1 ,

G 1 ( t , s ) = t α 1 Γ ( α ) 0 1 h ( t ) t α 1 d A ( t ) 0 1 h ( t ) G 0 ( t , s ) d A ( t ) .

证明:由引理2.1,(2.1)中的方程可转化为等价于的积分方程

x ( t ) = I 0 + α y ( t ) + c 1 t α 1 + c 2 t α 2 + + c n t α n , c i ( , + ) , i = 1 , 2 , , n ,

x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s + c 1 t α 1 + c 2 t α 2 + + c n t α n , c i ( , + ) , i = 1 , 2 , , n ,

由于 x ( 0 ) = x ( 0 ) = = x ( n 2 ) = 0 ,得 c 2 = c 3 = = c n = 0 ,因此有

x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s + c 1 t α 1 ,

D 0 + α 1 x ( t ) = c 1 Γ ( α ) 0 t y ( s ) d s .

又有 D 0 + α 1 x ( 1 ) = 0 1 h ( t ) x ( t ) d A ( t )

D 0 + α 1 x ( 1 ) = c 1 Γ ( α ) 0 1 y ( s ) d s .

可得

c 1 = 1 Γ ( α ) ( 0 1 h ( t ) x ( t ) d A ( t ) + 0 1 y ( s ) d s ) ,

所以

x ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 y ( s ) d s + t α 1 1 Γ ( α ) ( 0 1 h ( t ) x ( t ) d A ( t ) + 0 1 y ( s ) d s ) = 0 1 G 0 ( t , s ) y ( s ) d s + t α 1 Γ ( α ) 0 1 h ( t ) x ( t ) d A ( t ) . (2.3)

对(2.3)式两端乘以 h ( t ) 并且求关于 A ( t ) 的积分,有

0 1 h ( t ) x ( t ) d A ( t ) = Γ ( α ) Γ ( α ) 0 1 h ( t ) t α 1 d A ( t ) 0 1 h ( t ) 0 1 G 0 ( t , s ) y ( s ) d s d A ( t ) ,

所以

x ( t ) = 0 1 G 0 ( t , s ) y ( s ) d s + t α 1 Γ ( α ) 0 1 h ( t ) x ( t ) d A ( t ) = 0 1 G 0 ( t , s ) y ( s ) d s + t α 1 Γ ( α ) Γ ( α ) Γ ( α ) 0 1 h ( t ) t α 1 d A ( t ) 0 1 h ( t ) 0 1 G 0 ( t , s ) y ( s ) d s d A ( t ) = 0 1 G 0 ( t , s ) y ( s ) d s + t α 1 Γ ( α ) 0 1 h ( t ) t α 1 d A ( t ) 0 1 h ( t ) 0 1 G 0 ( t , s ) y ( s ) d s d A ( t ) = 0 1 G 0 ( t , s ) y ( s ) d s + 0 1 G 1 ( t , s ) y ( s ) d s = 0 1 G ( t , s ) y ( s ) d s .

引理2.3:由(2.2)定义的 G ( t , s ) 有下列性质:

1) G ( t , s ) 0 ( t , s ) [ 0 , 1 ] × [ 0 , 1 ]

2) G ( t , s ) [ 0 , 1 ] × [ 0 , 1 ] 上连续。

3) G ( t , s ) ω ω = max { 1 Γ ( α ) , 0 1 h ( t ) d A ( t ) Γ ( α ) ( Γ ( α ) 0 1 h ( t ) t α 1 d A ( t ) ) }

证明:根据 G ( t , s ) 的定义,只需证明(3)成立。由于

G 0 ( t , s ) t α 1 Γ ( α ) 1 Γ ( α ) ,

G 1 ( t , s ) t α 1 Γ ( α ) ( Γ ( α ) 0 1 h ( t ) t α 1 d A ( t ) ) 0 1 h ( t ) d A ( t ) 1 Γ ( α ) ( Γ ( α ) 0 1 h ( t ) t α 1 d A ( t ) ) 0 1 h ( t ) d A ( t ) ,

所以 G ( t , s ) = G 0 ( t , s ) + G 1 ( t , s ) ω

3. 主要结果

X = C [ 0 , 1 ] ,定义范数 x = max 0 t 1 | x ( t ) | 。则X是Banach空间,记

K = { x X : x ( t ) 0 , t [ 0 , 1 ] } ,

因此K是X的一个锥。本文,我们假设下面的条件(H1)成立。

(H1) f : [ 0 , 1 ] × [ 0 , + ) [ 0 , + ) 是连续函数。

由(H1),定义积分算子 T : K X

( T x ) ( t ) = λ 0 1 G ( t , s ) f ( s , x ( s ) ) d s , t [ 0 , 1 ] (3.1)

显然BVP(1.1)有解x当且仅当 x K 是由(3.1)定义的算子T的不动点。

引理3.1:假设条件(H1)成立,则 T : K K 是全连续算子。

定理3.1:假设条件(H1)成立,并且存在函数 m ( t ) 0 满足下列条件。

(H2) | f ( t , x 2 ) f ( t , x 1 ) | m ( t ) | x 2 x 1 | , t [ 0 , 1 ] , x 1 , x 2 [ 0 , + )

0 1 m ( s ) d s < 1 λ ω ,

则BVP(1.1)有唯一正解。

证明:对任意的 x K ,由于 G ( t , s ) 0 f ( t , x ) 0 ,可得 T x ( t ) 0 ,因而 T ( K ) K

T x 2 T x 1 = max t [ 0 , 1 ] | T x 2 ( t ) T x 1 ( t ) | = max t [ 0 , 1 ] λ 0 1 G ( t , s ) | f ( s , x 2 ( s ) ) f ( s , x 1 ( s ) ) | d s λ 0 1 ω m ( s ) | x 2 ( s ) x 1 ( s ) | d s λ ω 0 1 m ( s ) d s x 2 x 1 < x 2 x 1

由引理3.1, T : K K 是全连续算子,根据Banach不动点理论,算子T在K中有唯一不动点,即为BVP(1.1)的唯一正解。

基金项目

本文受到临沂大学大学生创新创业训练计划项目(X201910452076)部分资助。

参考文献

[1] Wang, G., Agarwal, R. and Cabada, A. (2012) Existence Results and Monotone Iterative Technique for Systems of Nonlinear Fractional Differential Equations. Applied Mathematics Letters, 25, 1019-1024.
https://doi.org/10.1016/j.aml.2011.09.078
[2] Guo, L., Liu, L. and Wu, Y. (2016) Uniqueness of Iterative Posi-tive Solutions for the Singular Fractional Differential Equations with Integral Boundary Conditions. Boundary Value Problems, 2016, 147.
https://doi.org/10.1186/s13661-016-0652-1
[3] Wang, Y. (2016) Positive Solutions for Fractional Differential Equation Involving the Riemann-Stieltjes Integral Conditions with Two Parameters. Journal of Nonlinear Sciences and Applications, 9, 5733-5740.
https://doi.org/10.22436/jnsa.009.11.02
[4] Zou, Y. and He, G. (2017) On the Uniqueness of Solutions for a Class of Fractional Differential Equations. Applied Mathematics Letters, 74, 68-73.
https://doi.org/10.1016/j.aml.2017.05.011
[5] Jiang, J., Liu, W. and Wang, H. (2018) Positive Solutions to Singular Dirichlet-Type Boundary Value Problems of Nonlinear Fractional Differential Equations. Advances in Difference Equations, 2018, 169.
https://doi.org/10.1186/S13662-018-1627-6
[6] Cui, Y., Ma, W., Wang, X. and Su, X. (2018) Uniqueness Theorem of Differential System with Coupled Integral Boundary Conditions. Electronic Journal of Qualitative Theory of Differential Equations, 9, 1-10.
[7] Cabada, A. and Wang, G. (2012) Positive Solutions of Nonlinear Fractional Differential Equations with Integral Boundary Value Conditions. Journal of Mathematical Analysis and Applications, 389, 403-411.
https://doi.org/10.1016/j.jmaa.2011.11.065
[8] Wang, Y. (2018) Existence and Nonexistence of Positive Solutions for Mixed Fractional Boundary Value Problem with Parameter and p-Laplacian Operator. Journal of Function Spaces, 2018, Article ID: 1462825.
[9] Hao, X., Zhang, L. and Liu, L. (2019) Positive Solutions of Higher Order Fractional Integral Boundary Value Problem with a Parameter. Nonlinear Analysis-Modelling and Control, 24, 210-223.
https://doi.org/10.15388/NA.2019.2.4
[10] Podlubny, I. (1999) Fractional Differential Equations, Volume 198. Academic Press, San Diego, CA.
[11] Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.