|
[1]
|
C. N. D. Buckjohn, M. S. Siewe, C. Tchawoua and T. C. Kofane. Transition to chaos in plasma density with asymmetry dou-ble-well potential for parametric and external harmonic oscilla-tions. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21(7): 1879-1893.
|
|
[2]
|
C. Murakami, W. Murakami and K.-I. Hirose. Global periodic structure of integrable Duffing’s maps. Chaos, Solitons and Fractals, 2003, 16(2): 233-244.
|
|
[3]
|
Z.-M. Ge, P.-C. Tsen. Nonliear dynamic analysis and control of chaos for a two-degree-of-freedom rigid body with vibrating support. Jour-nal of Sound and Vibration, 2001, 240(2): 323-349.
|
|
[4]
|
Q. Feng, H. He. Modeling of the mean Poincaré map on a class of random impact oscillators. European Journal of Mechanics A/Solids, 2003, 22(2): 267-283.
|
|
[5]
|
Z. J. Jing, Z. Y. Yang and T. Jiang. Complex dynamics in Du- ffing-Van der pol equation. Chaos Solitons and Fractals, 2006, 27(3): 722-747.
|
|
[6]
|
J. H. Xie, W. C. Ding. Hopf-Hopf bifurcation and invariant torus T2 of a vibro-impact system. International Journal of Non-Linear Me-chanics, 2005, 40(4): 531-543.
|
|
[7]
|
H. Situngkir, Y. Surya. Neural network revisited: Perception on modified Poincaré map of financial time-series data. Physica A, 2004, 344(1-2): 100-103.
|
|
[8]
|
J. Garcia-Margallo, J. D. Bejarano. Melnikov’s method for non- linear oscillators with non-linear excitations. Journal of Sound and Vibration, 1998, 212(2): 311-319.
|
|
[9]
|
J.-R. Chazottes. Poincaré recurrences and entropy of suspended flows. Dynamical Systems, 2001, 332(8): 739-744.
|
|
[10]
|
W. Tucker. Computing accurate Poincaré maps. Physica D, 2002, 171(3): 127-137.
|
|
[11]
|
J. Guckenheimer, P. Holmes. Nonlinear oscillations, dynamical systems and bifurca-tions of vector fields. New York: Springer- Verlag, 1983.
|
|
[12]
|
N. Buric, A. Rampioni and G. Turchetti. Statistics of Poincaré re-currences for a class of smooth circle maps. Chaos Solitons and Fractals, 2005, 23(5): 1829-1840.
|
|
[13]
|
Y.-C. Hsiao, P.-C. Tung. Detecting the unstable periodic orbits of chaotic nonautonomous system with an approximate global Poincaré maps. Physics Letters A, 2001, 290: 59-64.
|
|
[14]
|
M. Hénon. On the numerical computa-tion of Poincaré maps. Physica D, 1982, 5(2-3): 412-414.
|