紫草素与免疫微环境的研究进展
Research Progress in Immune Microenvironment of Shikonin
DOI: 10.12677/PI.2020.92010, PDF, HTML, XML, 下载: 816  浏览: 2,772 
作者: 周俊菲, 纪雪梅, 刘 煜*:中国药科大学生命科学与技术学院,江苏 南京
关键词: 紫草素免疫微环境免疫治疗Shikonin Immune Microenvironment Immunotherapy
摘要: 紫草素是从紫草科植物中提取的一种具有抗肿瘤、抗病毒、抗炎、抗菌等多种生物活性的萘醌类化合物。近年来,其对于免疫性疾病和肿瘤免疫治疗的作用得到了广泛的关注和研究。本文以紫草素对T细胞,DC细胞和巨噬细胞等免疫细胞作用的研究进展进行综述,为紫草素及其衍生化合物的研究及利用提供参考。
Abstract: Shikonin is a naphthoquinone compound extracted from comfrey, which has various biological activities of anti-tumor, antiviral, anti-inflammation and anti-bacteria. In recent years, its effect on immune diseases and tumor immunotherapy has received extensive attention and research. In this paper, the research progress of shikonin on T cells, DC cells, macrophages and other immune cells was reviewed to provide references for the research and utilization of shikonin and its derivatives.
文章引用:周俊菲, 纪雪梅, 刘煜. 紫草素与免疫微环境的研究进展[J]. 药物资讯, 2020, 9(2): 64-70. https://doi.org/10.12677/PI.2020.92010

1. 引言

紫草素(Shikonin)是从紫草科植物藏药藏紫草Onose hookeri-C.B.claike var.longi-florun Duithe.、新疆紫草Arnebia euchroma (Royle) Johnst.和紫草Lithospermum erythrorhizon Sieb. et Zucc.的干燥根中提取分离的一种红色成分,属萘醌类化合物,分子式为C16H16O5,结构式见图1,具有抗炎、抗氧化应激、抗病毒、抗肿瘤、抗菌等多种生物学活性 [1] [2]。在紫草素的抗肿瘤作用中,有大量研究表明紫草素可以通过多种不同的方式抑制肿瘤细胞。紫草素能够增加细胞内ROS (reactive oxygen species,活性氧簇),降低线粒体膜电位以及Noxa和tBid促凋亡蛋白的表达,同时伴随DNA片段化,诱导Caspase依赖的人组织细胞淋巴瘤U937细胞的凋亡,发挥抗组织淋巴瘤的作用 [3]。紫草素诱导RIP1 (Receptor-interacting protein 1,受体相互作用蛋白激酶1)和RIP3 (Receptor-interacting protein 3,受体相互作用蛋白激酶3)表达及RIP1/RIP3坏死体的形成,增加细胞内ROS和MitoSOX (Mitochondrial Superoxide Indicator,线粒体超氧化物)来诱导神经胶质瘤细胞的坏死 [4]。此外,紫草素被证明可以非凋亡途径诱导人乳腺癌细胞MCF-7细胞坏死,从而绕过由p-糖蛋白、Bcl-2和Bcl-xL介导的乳腺癌细胞紫杉醇耐药 [5]。紫草素在抗病毒和抗菌方面也发挥一定作用,研究表明紫草素可以抑制EV71 (Enterovirus 71,肠道病毒71型) [6] 、H1N1 (Influenza a,甲型流感) [7] 和HIV-1 (Human Immuno-deficiency Virus,人免疫缺陷病毒1型)等病毒。其中抗HIV-1病毒的作用主要是通过抑制单核细胞趋化和钙通量,调节各种趋化因子,同时通过下调HIV-1协同受体CCR5基因和蛋白的表达,抑制HIV-1的复制 [8]。紫草素联合膜渗透剂和ATP酶抑制剂,可显著抑制MRSA (Methicillin-resistant Staphylococcus aureus,耐甲氧西林金黄色葡萄球菌)的生长,诱导MRSA细胞质膜的破坏,导致细胞解体和裂解。而添加肽聚糖可抑制抗菌活性,表明紫草素该抗菌作用和其与细胞表面的肽聚糖的相互作用有关 [9]。除此之外,多项研究发现紫草素可通过调控T细胞、巨噬细胞、B细胞、中性粒细胞等免疫细胞的功能,进一步调节TNFα、IFN-γ、IL-12和IL-10等多种细胞因子的分泌来调控疾病的进展。本文就紫草素与免疫细胞及与疾病的相关性研究进行综述。

Figure 1. Chemical structures of Shikonin (1) and its enantiomer, Alkannin (2)

图1. 紫草素及其对映异构体(左旋紫草素)的化学结构式

2. 紫草素与免疫细胞

2.1. T细胞

自身反应性T细胞可诱发自身免疫性疾病,而同种反应性T细胞可引起移植物排斥反应 [10]。引流淋巴结中激活的T细胞迁移到移植器官/组织,协调移植排斥反应的过程,通过激活效应T细胞产生大量促炎细胞因子,导致组织破坏和最终的同种异体排斥反应,因此抑制T细胞的活化可抑制排斥反应的关键。研究发现紫草素可通过抑制mTOR信号通路抑制T细胞的增殖及活化,减少促炎细胞因子的基因表达,包括IFNγ、IL-6、TNFα、IL-17A,增加抗炎介质IL-10、TGF-β1的表达,发挥抑制移植物的排斥反应;同时紫草素可能通过上调DC细胞中IDO (Indoleamine 2,3 dioxygenase,吲哚胺2,3双加氧酶)基因表达,阻碍其成熟分化,诱导CD4+ Foxp3+ Tregs细胞(Regulatory cells,调节性T细胞)的产生,显著延长同种异体皮肤移植的小鼠存活时间(p < 0.01) [11]。Th细胞(helper T cell,辅助性T细胞)在关节炎中起着重要作用,Th1细胞驱动疾病的发生与疾病炎症有关,而Th2细胞在一定程度上对抗炎症。在正常情况下,Th1和Th2细胞相互促进,相互制约,使机体Th1/Th2细胞维持一定的平衡;在某种特定的病理环境中会导致Th1/Th2的失衡,首先可能是Th1和Th2细胞数量分化不平衡,使得Th1和Th2细胞所分泌的炎性细胞因子和抗炎细胞因子失衡,从而启动疾病的发生。在关节炎动物模型中,紫草素通过调节T-bet转录因子降低Th1细胞因子TNFα和IL-12的表达,以及增加GATA3转录因子的表达,上调Th2细胞因子IL-4和IL-10的表达,通过调节Th细胞由Th1细胞向Th2细胞极化从而发挥抗炎的作用,结果明显减少了滑膜组织和关节软骨的损伤 [12]。紫草素以PKM2 (pyruvate kinase,丙M2型酮酸激酶)相关途径,抑制由Hcy (homocysteinemia,同型半胱氨酸血症)增强的葡萄糖代谢,抑制糖代谢中间产物使CD4+ T细胞IFN-γ分泌量减少,抑制巨噬细胞向M1促炎表型极化,改善动脉粥样硬化 [13]。另外,研究表明紫草素能够通过NF-κB和MAPK信号途径抑制T淋巴细胞的增殖与激活,即通过抑制IKKβ活性和JNK磷酸化而不影响ERK和P38蛋白磷酸化,发挥抑制IL-2、IFN-γ分泌和促进细胞周期阻滞的作用。以上结果表明紫草素具有开发为免疫抑制药物的潜在价值 [14]。

2.2. DC细胞(Dendritic Cells,树突状细胞)

研究发现,紫草素可以强烈刺激肿瘤细胞的ICD (Immunogenic cell death,免疫原性细胞死亡),通过DC细胞诱导出强有力的免疫反应,抑制肿瘤的生长和转移 [15] [16] [17]。深入研究表明,紫草素作用于分子靶点hnRAPA1 (heterogeneous nuclear ribonucleoprotein A1,异质核核糖核蛋白A1)诱导乳腺癌中ICD,hnRAPA1是颗粒酶A的底物,可干扰RNA合成导致免疫介导的程序性细胞死亡 [16]。紫草素使DC细胞表型和功能成熟,增加Th17 (T helper cell 17,辅助T细胞17)细胞群,从而增强Th1细胞和细胞毒性T细胞活性,发挥杀伤肿瘤及诱导肿瘤细胞裂解的作用,因此,紫草素可作为增强DC细胞免疫治疗疫苗的佐剂 [18]。在哮喘的人和动物模型中,CD4+ Th2淋巴细胞起着关键作用,而DC细胞是肺中主要的抗原呈递细胞,在Th2启动和维持过敏性气道炎症中发挥重要作用 [19]。紫草素通过降低MHC II类分子、共刺激分子CD80、CD86、OX40L和CCR7的细胞表面表达,呈剂量依赖性地抑制卵白蛋白(OVA)和胸腺基质淋巴细胞生成素(TSLP)共诱导的BM-DC (bone marrow-derived dendritic cells,骨髓来源树突状细胞)分化成熟,从而抑制CD4+ T细胞的增殖以及Th2细胞因子的IL-4和IL-5的释放,抑制过敏性气道炎症 [20]。

2.3. 巨噬细胞

用LPS (脂多糖)刺激THP-1单核细胞的实验发现,紫草素显著抑制了大约50个的炎症早期表达基因,其中一些与趋化因子和炎症调节的相关细胞因子一致,如TNF-α,CCL8,IL-1β和NFATC3,结果证明紫草素对巨噬细胞的活化有很强的抑制作用 [21]。紫草素及其衍生物可能是通过抑制ERK磷酸化来下调NF-κB的激活,从而抑制LPS刺激的RAW 264.7小鼠巨噬细胞中iNOS蛋白的表达,或者通过抑制蛋白酶体介导的IκBα降解和诱导细胞死亡,从而抑制LPS刺激的大鼠原代巨噬细胞中产生TNFα和NF-κB核异位产生抗炎作用 [22] [23]。另有研究也证实了紫草素可靶向抑制NOS (nitric oxide synthase,一氧化氮合酶)等靶点活性,抑制乙酰胆碱对胸主动脉松弛的作用以及抑制LPS诱导的RAW 264.7细胞释放NO [24]。在自身免疫性疾病急性溃疡型结肠炎小鼠模型中,紫草素可减少COX-2 (Cyclooxygenase,环氧化酶2)表达和MPO (Myeloperoxidase,髓过氧化物酶)活性,降低NF-κB和STAT3的活化,巨噬细胞中TNFα,IL-1β,IL-6表达被抑制,有效阻止结肠直肠的缩短,缓解体重下降 [25]。RANTES (Regulated upon activation normal T‑cell expressed and secreted,受正常T细胞表达和分泌活化的调节因子)是CCR5的配体,RANTES是单核巨噬细胞的强效趋化因子 [26],该趋化因子及其受体在子宫内膜异位症中具有生物活性。研究发现紫草素通过减少患者的腹腔内单核巨噬细胞向病变部位迁移,并且抑制RANTES的表达,从而降低单核细胞对RANTES趋化信号的敏感性等多种机制抑制子宫内膜异位症的发展,并减轻腹膜炎症 [27]。

2.4. NK细胞(Natural Killer Cell,自然杀伤细胞)和肥大细胞

对于NK细胞,紫草素可以通过调节p-ERK1/2和p-Akt的表达,增强NK细胞的增殖和对结肠癌细胞的毒性 [28],以及其衍生物能够在体内逆转或增强荷瘤小鼠的NK细胞活性和淋巴细胞转化,抑制肝癌和肉瘤的生长,延长小鼠的生存期,同时恢复或增加荷瘤小鼠中CD3和CD19阳性细胞的数量,保护免疫器官不受损害 [29]。另外,紫草素可通过抑制肥大细胞脱颗粒,抑制中性粒细胞呼吸爆发(氧爆发),改变磷脂酰肌醇介导的信号转导,或阻断趋化因子与CCR-1的结合等机制发挥抗炎作用 [30] [31]。

2.5. 其他

近年来的研究揭示了免疫系统和代谢系统之间相互作用的多种方式,如DC细胞,M1型巨噬细胞和效应T细胞可以将代谢程序从氧化磷酸化转变为需氧糖酵解,以满足细胞生长或效应功能的生物能量和生物合成需求 [32] [33],促进肿瘤的增殖;B细胞在BCR (B cell receptor,B细胞受体)或LPS刺激下,是以一种相对平衡的方式同时增加糖酵解和氧化磷酸化的速率 [34];在肠道免疫系统中,肠固有层的IgA+浆细胞同时利用糖酵解和氧化代谢;PPs (Peyer's patches,派尔集合淋巴结)中的初始B细胞则优先利用氧化代谢 [35]。紫草素能够通过调节代谢系统影响免疫细胞的功能,研究表明紫草素可以抑制Hcy诱导的PKM2酶活性上调和代谢重编程,从而阻止Akt-mTOR信号途径相关的Hcy诱导的B细胞增殖及分化,减小浆细胞形成及抗体分泌,有助于自身免疫疾病的治疗 [36]。同时,紫草素作为一种有效的PKM2抑制剂,可以通过抑制巨噬细胞中的PKM2来限制肿瘤细胞中的糖酵解,并保护小鼠免于败血症,也可以通过抑制瓦博格效应,解除酸环境引起的免疫抑制,诱导细胞死亡 [36] [37]。紫草素通过对肿瘤相关巨噬细胞(tumor associated macrophage, TAM)和糖代谢的双重作用重新编程,重塑肿瘤免疫微环境,巩固ICD启动的抗肿瘤免疫,即抑制葡萄糖代谢的作用对肿瘤免疫循环具有正向调节作用 [38]。

3. 展望

紫草素及其衍生物除作为单一药物外,还被广泛研究与其他治疗癌症的药物联合使用,特别是与化疗药物如顺铂 [39] 、阿霉素 [40] 、紫杉醇 [30] 和吉西他滨 [33] 联合使用,如紫草素增强了EGFR抑制剂第一代吉非替尼(Gefitinib)和第二代阿法替尼(Afatinib)对非小细胞肺癌的作用 [41]。但是前期紫草素与免疫细胞之间研究并不多,且主要针对于免疫性疾病,而其在抗肿瘤方面与免疫治疗联合应用未受到广泛关注。多篇研究显示紫草素促进DC细胞表型和功能成熟,增强Th1细胞和细胞毒性T细胞活性发挥抗肿瘤的作用,是否其能够与免疫检查点PD-1 (Programmed cell death-1,程序性死亡受体1)、PD-L1 (Programmed cell death ligand 1,程序性死亡受体1配体)、CTLA-4 (cytotoxic T lymphocyte-associated antigen-4,细胞毒T淋巴细胞相关抗原4)等热点靶标抗体联合应用提高肿瘤对这些靶点抑制剂应答率,增加肿瘤局部浸润T细胞,增强免疫治疗疗效,同时减少免疫相关不良反应的发生作用,值得进一步深入探讨。同时,紫草素可应用于DC细胞免疫治疗的疫苗佐剂,通过联合应用以显著提高肿瘤疫苗的作用效果,这将为肿瘤疫苗的开发及使用提供新的方向。

综上所述,紫草素是一种具有潜在的免疫治疗或辅助治疗的药物,不断探寻紫草素对免疫微环境的影响及作用机制,将有助于针对其开发新的联合免疫治疗模式,减少免疫治疗中耐药现象的发生,提高免疫治疗的效果,促进免疫治疗的快速发展。但是目前紫草素对各类免疫细胞的作用仍需要更加深入的研究,以确定其内在的分子机制,保证其在生物体内的安全性,为实行药物治疗奠定基础。

NOTES

*通讯作者。

参考文献

[1] Wang, F., Yao, X., Zhang, Y., et al. (2019) Synthesis, Biological Function and Evaluation of Shikonin in Cancer Therapy. Fitoterapia, 134, 329-339.
https://doi.org/10.1016/j.fitote.2019.03.005
[2] Andújar, I., Ríos, J., Giner, R., et al. (2013) Pharmacological Properties of Shikonin: A Review of Literature since 2002. Planta Medica, 79, 1685-1697.
https://doi.org/10.1055/s-0033-1350934
[3] Piao, J., Cui, Z., Furusawa, Y., et al. (2013) The Mo-lecular Mechanisms and Gene Expression Profiling for Shikonin-Induced Apoptotic and Necroptotic Cell Death in U937 Cells. Chemico-Biological Interactions, 205, 119-127.
https://doi.org/10.1016/j.cbi.2013.06.011
[4] Lu, B., Gong, X., Wang, Z.Q., et al. (2017) Shikonin Induces Glioma Cell Necroptosis in Vitro by ROS Overproduction and Promoting RIP1/RIP3 Necrosome Formation. Acta Pharmaceutica Sinica, 38, 1543-1553.
https://doi.org/10.1038/aps.2017.112
[5] Han, W., Li, L., Qiu, S., et al. (2007) Shikonin Circumvents Cancer Drug Resistance by Induction of a Necroptotic Death. Molecular Cancer Therapeutics, 6, 1641-1649.
https://doi.org/10.1158/1535-7163.MCT-06-0511
[6] Zhang, Y., Han, H., Sun, L., et al. (2017) Antiviral Activity of Shikonin Ester Derivative PMM-034 against Enterovirus 71 in Vitro. Brazilian Journal of Medical and Biological Research, 50, e6586.
https://doi.org/10.1590/1414-431x20176586
[7] Zhang, Y., Han, H., Qiu, H., et al. (2017) Antiviral Activity of a Synthesized Shikonin Ester against Influenza A (H1N1) Virus and Insights into Its Mechanism. Biomedicine & Pharmacotherapy, 93, 636-645.
https://doi.org/10.1016/j.biopha.2017.06.076
[8] Chen, X., Yang, L., Zhang, N., et al. (2003) Shikonin, a Component of Chinese Herbal Medicine, Inhibits Chemokine Receptor Function and Suppresses Human Immunodeficiency Virus Type 1. Antimicrobial Agents and Chemotherapy, 47, 2810-2816.
https://doi.org/10.1128/AAC.47.9.2810-2816.2003
[9] Lee, Y., Lee, D., Kim, Y., et al. (2015) The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 520578.
https://doi.org/10.1155/2015/520578
[10] Issa, F., Schiopu, A. and Wood, K.J. (2010) Role of T Cells in Graft Rejection and Transplantation Tolerance. Journal Expert Review of Clinical Immunology, 6, 155-169.
https://doi.org/10.1586/eci.09.64
[11] Zeng, Q., Qiu, F., Chen, Y., et al. (2019) Shikonin Prolongs Allograft Survival via Induction of CD4(+) FoxP3(+) Regulatory T Cells. Frontiers in Immunology, 10, 652.
https://doi.org/10.3389/fimmu.2019.00652
[12] Dai, Q., Fang, J. and Zhang, F. (2009) Dual Role of Shikonin in Early and Late Stages of Collagen Type II Arthritis. Molecular Biology Reports, 36, 1597-1604.
https://doi.org/10.1007/s11033-008-9356-7
[13] Lu, S.L., Dang, G.H., Deng, J.C., et al. (2020) Shikonin Attenuates Hyperhomocysteinemia-Induced CD4(+) T Cell Inflammatory Activation and Atherosclerosis in ApoE(-/-) Mice by Metabolic Suppression. Acta Pharmaceutica Sinica, 41, 47-55.
https://doi.org/10.1038/s41401-019-0308-7
[14] Li, T., Yan, F., Wang, R., et al. (2013) Shikonin Suppresses Human T Lymphocyte Activation through Inhibition of IKK beta Activity and JNK Phosphorylation. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 379536.
https://doi.org/10.1155/2013/379536
[15] Wang, H., Tang, Y., Fang, Y., et al. (2019) Reprogramming Tumor Immune Microenvironment (TIME) and Metabolism via Biomimetic Targeting Codelivery of Shikonin/JQ1. Nano Letters, 19, 2935-2944.
https://doi.org/10.1021/acs.nanolett.9b00021
[16] Yin, S., Efferth, T., Jian, F., et al. (2016) Immunogenicity of Mammary Tumor Cells Can Be Induced by Shikonin via Direct Binding-Interference with hnRNPA1. Oncotarget, 7, 43629-43653.
https://doi.org/10.18632/oncotarget.9660
[17] Lin, T.J., Lin, H.T., Chang, W.T., et al. (2015) Shikonin-Enhanced Cell Immunogenicity of Tumor Vaccine Is Mediated by the Differential Effects of DAMP Components. Molecular Cancer, 14, 174.
https://doi.org/10.1186/s12943-015-0435-9
[18] Chen, H.M., Wang, P.H., Chen, S.S., et al. (2012) Shikonin In-duces Immunogenic Cell Death in Tumor Cells and Enhances Dendritic Cell-Based Cancer Vaccine. Cancer Immu-nology, Immunotherapy, 61, 1989-2002.
https://doi.org/10.1007/s00262-012-1258-9
[19] Constant, S.L., Brogdon, J.L., Piggott, D.A., et al. (2002) Resi-dent Lung Antigen-Presenting Cells Have the Capacity to Promote Th2 T Cell Differentiation in Situ. The Journal of Clinical Investigation, 110, 1441-1448.
https://doi.org/10.1172/JCI0216109
[20] Lee, C.C., Wang, C.N., Lai, Y.T., et al. (2010) Shikonin Inhibits Maturation of Bone Marrow-Derived Dendritic Cells and Suppresses Allergic Airway Inflammation in a Murine Model of Asthma. British Journal of Pharmacology, 161, 1496-1511.
https://doi.org/10.1111/j.1476-5381.2010.00972.x
[21] Chiu, S.C., Tsao, S.W., Hwang, P.I., et al. (2010) Differential Functional Genomic Effects of Anti-Inflammatory Phytocompounds on Immune Signaling. BMC Genomics, 11, Article No. 513.
https://doi.org/10.1186/1471-2164-11-513
[22] Cheng, Y.W., Chang, C.Y., Lin, K.L., et al. (2008) Shikonin Derivatives Inhibited LPS-Induced NOS in RAW 264.7 Cells via Down-Regulation of MAPK/NF-kappaB Signaling. Journal of Ethnopharmacology, 120, 264-271.
https://doi.org/10.1016/j.jep.2008.09.002
[23] Lu, L., Qin, A., Huang, H., et al. (2011) Shikonin Extracted from Medicinal Chinese Herbs Exerts Anti-Inflammatory Effect via Proteasome Inhibition. European Journal of Pharma-cology, 658, 242-247.
https://doi.org/10.1016/j.ejphar.2011.02.043
[24] Yoshida, L.S., Kawada, T., Irie, K., et al. (2010) Shikonin Di-rectly Inhibits Nitric Oxide Synthases: Possible Targets That Affect Thoracic Aorta Relaxation Response and Nitric Oxide Release from RAW 264.7 Macrophages. Journal of Pharmacological Sciences, 112, 343-351.
https://doi.org/10.1254/jphs.09340FP
[25] Andújar, I., Ríos, J.L., Giner, R.M., et al. (2012) Beneficial Effect of Shikonin on Experimental Colitis Induced by Dextran Sulfate Sodium in BALB/c Mice. Evidence-Based Complemen-tary and Alternative Medicine, 2012, Article ID: 271606.
https://doi.org/10.1155/2012/271606
[26] Wang, X.Q., Yu, J., Luo, X.Z., et al. (2010) The High Level of RANTES in the Ectopic Milieu Recruits Macrophages and Induces Their Tolerance in Progression of Endometriosis. Journal of Molecular Endocrinology, 45, 291-299.
https://doi.org/10.1677/JME-09-0177
[27] Yuan, D.P., Gu, L., Long, J., et al. (2014) Shikonin Reduces Endometriosis by Inhibiting RANTES Secretion and Mononuclear Macrophage Chemotaxis. Experimental and Therapeutic Medicine, 7, 685-690.
https://doi.org/10.3892/etm.2013.1458
[28] Li, Y., Lu, H., Gu, Y., et al. (2017) Enhancement of NK Cells Proliferation and Function by Shikonin. Immunopharmacology and Immunotoxicology, 39, 124-130.
https://doi.org/10.1080/08923973.2017.1299174
[29] Su, L., Yan, G.Z., et al. (2012) Shikonin Derivatives Pro-tect Immune Organs from Damage and Promote Immune Responses in Vivo in Tumour-Bearing Mice. Phytotherapy Research, 26, 26-33.
https://doi.org/10.1002/ptr.3503
[30] Chen, X., Yang, L., Oppenheim, J.J., et al. (2002) Cellular Pharmacology Studies of Shikonin Derivatives. Phytotherapy Research, 16, 199-209.
https://doi.org/10.1002/ptr.1100
[31] Papageorgiou, V.P., Assimopoulou, A.N., Couladouros, E.A., et al. (1999) The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products. Angewandte Chemie, 38, 270-301.
https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3<270::AID-ANIE270>3.0.CO;2-0
[32] Krawczyk, C.M., Holowka, T., Sun, J., et al. (2010) Toll-Like Receptor-Induced Changes in Glycolytic Metabolism Regulate Dendritic Cell Activation. Blood, 115, 4742-4749.
https://doi.org/10.1182/blood-2009-10-249540
[33] Galván-Peña, S. and O’neill, L.A. (2014) Metabolic Reprograming in Macrophage Polarization. Frontiers in Immunology, 5, 420.
https://doi.org/10.3389/fimmu.2014.00420
[34] Li, W., Liu, J., Jackson, K., et al. (2014) Sensitizing the Thera-peutic Efficacy of Taxol with Shikonin in Human Breast Cancer Cells. PLoS ONE, 9, e94079.
https://doi.org/10.1371/journal.pone.0094079
[35] Kunisawa, J., Sugiura, Y., Wake, T., et al. (2015) Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vita-min B1. Cell Reports, 13, 122-131.
https://doi.org/10.1016/j.celrep.2015.08.063
[36] Chen, J., Xie, J., Jiang, Z., et al. (2011) Shikonin and Its Ana-logs Inhibit Cancer Cell Glycolysis by Targeting Tumor Pyruvate Kinase-M2. Oncogene, 30, 4297-4306.
https://doi.org/10.1038/onc.2011.137
[37] Wang, Y., Zhou, Y., Jia, G., et al. (2014) Shikonin Suppresses Tumor Growth and Synergizes with Gemcitabine in a Pancreatic Cancer Xenograft Model: Involvement of NF-κB Signaling Pathway. Biochemical Pharmacology, 88, 322-333.
https://doi.org/10.1016/j.bcp.2014.01.041
[38] Wang, H., Tang, Y., Fang, Y., et al. (2019) Reprogramming Tumor Immune Microenvironment (TIME) and Metabolism via Bi-omimetic Targeting Codelivery of Shikonin/JQ1. Nano Letters, 19, 2935-2944.
https://doi.org/10.1021/acs.nanolett.9b00021
[39] Shilnikova, K., Piao, M.J., Kang, K.A., et al. (2018) Shikonin Induces Mitochondria-Mediated Apoptosis and Attenuates Epithelial-Mesenchymal Transition in Cisplatin-Resistant Human Ovarian Cancer Cells. Oncology Letters, 15, 5417-5424.
https://doi.org/10.3892/ol.2018.8065
[40] Ni, F., Huang, X., Chen, Z., et al. (2018) Shikonin Exerts Antitumor Activity in Burkitt’s Lymphoma by Inhibiting C-MYC and PI3K/AKT/mTOR Pathway and Acts Synergistically with Doxorubicin. Scientific Reports, 8, Article No. 3317.
https://doi.org/10.1038/s41598-018-21570-z
[41] Li, Y.L., Hu, X., Li, Q.Y., et al. (2018) Shikonin Sensitizes Wild-Type EGFR NSCLC Cells to Erlotinib and Gefitinib Therapy. Molecular Medicine Reports, 18, 3882-3890.
https://doi.org/10.3892/mmr.2018.9347