不同因素对尿毒症患者前臂自体动静脉内瘘初次失功的影响
The Effect of Different Factorson the Initial Dysfunction of Forearm Arteriovenous Fistula in Uremia Patients
DOI: 10.12677/ACM.2020.104082, PDF, HTML, XML, 下载: 510  浏览: 759  科研立项经费支持
作者: 崔天元, 孔祥雷, 杨 洋, 李文斌:山东第一医科大学附属千佛山医院肾病学科,山东 济南
关键词: 尿毒症自体动静脉内瘘血磷叶酸他汀类药物阿司匹林RAAS阻断剂Uremia Arteriovenous Fistula Serum Phosphorus Folic Acid Statins Aspirin RAAS Blocker
摘要: 目的:探讨不同因素对尿毒症患者前臂自体动静脉内瘘(AVF)初次失功的影响。方法:回顾性分析从本院选取336名行前臂AVF (手术方式桡动脉与头静脉端侧吻合,动静脉直径均>2 mm)的成年尿毒症患者的一般临床资料、用药情况等,采用Kaplan-Meier生存曲线分析不同药物治疗组AVF的生存差异,Cox多因素回归模型分析AVF失功的危险因素。结果:在纳入研究的患者中,有72例(21.4%)患者发生了AVF的失功,12个月及24个月时AVF的通畅率分别为78.0%和66.0%。AVF失功组与通畅组相比,两组之间在年龄、性别、用药情况等指标上均无统计学差异,但是AVF失功组血磷水平明显高于通畅组[2.03 (1.68~2.29) vs. 1.69 (1.38~2.12) mmol/L, P = 0.01]。结论:血磷升高为AVF失功的独立危险因素。
Abstract: Objective: To explore the effect of different factors on the initial dysfunction of forearm arteriovenous fistula in uremia patients. Methods: The general clinical data and medications of 336 adult uremic patients with forearm AVF (The radial artery and cephalic vein were anastomosed end to side, and the diameter of the artery and vein was more than 2 mm) from our hospital were studied by retrospective analysis. The survival times of overall and different groups were evaluated by the Life table and Kaplan-Meier curves. Multivariable Cox regression analysis was used to study the factors associated with the dysfunction of AVF. Results: Among the patients included in the study, 72 (21.4%) had AVF dysfunction, and the patency rate of AVF was 78.0% and 66.0% at 12 and 24 months, respectively. There was no significant difference in age, gender and drug use be-tween the two groups, but the level of the serum phosphorus in AVF group was significantly higher than that in normal group [2.03 (1.68 - 2.29) vs. 1.69 (1.38 - 2.12) mmol/L, P = 0.01]. Conclusions: The increase of the serum phosphorus was an independent risk factor for AVF failure.
文章引用:崔天元, 孔祥雷, 杨洋, 李文斌. 不同因素对尿毒症患者前臂自体动静脉内瘘初次失功的影响[J]. 临床医学进展, 2020, 10(4): 520-529. https://doi.org/10.12677/ACM.2020.104082

1. 前言

慢性肾脏病(chronic kidney disease, CKD)已成为全球危害人类健康的公共卫生问题,具有高发病率、高致残率、高医疗费用、低知晓率的流行病学特点,我国CKD患病率高达10.8% [1],CKD的快速增加,尤其是尿毒症透析患者的增加,不仅增加心血管疾病的发病,给患者带来沉重负担,同时会显著增加医疗及护理负担。自体动静脉内瘘(AVF)作为血管通路引入血液透析领域已50余年,与其他血管通路相比,具有使用寿命长、感染率低、并发症相对少等优点,成为尿毒症患者维持性血液透析首选的血管通路 [2]。临床观察表明,AVF通畅率与诸多因素有关,如年龄、糖尿病史、体质量指数、血压情况、血管本身的特性等 [3]。即使经过仔细的术前评估筛选及熟练的手术操作,AVF的早期失功率仍高达20%~50% [4],其表现为AVF不能成熟或不能提供充足的有效血流量来完成血液透析。缺乏能够有效预测尿毒症患者AVF发生失功的预测因子,导致目前难以在尿毒症患者中界定AVF早期失功的高危群体,这也是目前AVF早期失功防治工作的主要难点。因此,我们进行该项回顾性队列研究,探讨影响AVF初次失功的危险因素,同时进一步分析不同药物治疗对AVF的失功是否有影响。

2. 资料与方法

2.1. 研究对象

从本院选取2013年1月到2016年3月随访时间截止到2016年6月行前臂AVF (手术方式桡动脉与头静脉端侧吻合,动静脉直径均>2 mm)的成年尿毒症患者为研究对象。排除标准为:合并恶性肿瘤;全身免疫性疾病活动期;急慢性感染性疾病如结核感染;合并有心、脑、肝和造血系统等严重原发性疾病;妊娠或哺乳期妇女;肾移植患者;不同意进入该研究的患者。随访数据完整的336例患者纳入到最终的统计分析当中,男性213例,女性123例,平均年龄(53.9 ± 14.1)岁。其中原发病中慢性肾小球肾炎80例(23.8%)、糖尿病肾病72例(21.4%)、其他184例(54.8%)。所有入选患者术前均签署知情同意书。该研究经山东大学附属千佛山医院伦理委员会批准。

2.2. 临床资料

收集患者临床资料,包括年龄、性别、原发病、高血压、糖尿病及心血管疾病病史、疾病诊断等信息,同时收集患者用药包括叶酸、他汀类药物、阿司匹林及RAAS阻断剂等情况。前臂AVF手术方式为桡动脉与头静脉端侧连续吻合,术前要求动静脉直径均>2 mm,吻合口直径为0.5~1 cm,术中常规应用肝素生理盐水冲洗静脉管腔。

2.2.1. 生化指标

实验室检测包括谷丙转氨酶、谷草转氨酶、尿素氮、血肌酐、血尿酸、总胆固醇、低密度脂蛋白、D二聚体、血钙、血磷及全段甲状旁腺激素(iPTH)等。空腹至少8小时静脉采血,以上指标均由本院检验中心的全自动生化分析仪测定。其中血肌酐采用罗氏酶法测定,估测的肾小球滤过率(eGFR)采用CKD-EPI两种公式计算 [5] [6],eGFR = a × (血肌酐浓度/b)c × (0.993)年龄,a值:黑人女性 = 166,黑人男性 = 163,其他人种女性 = 144,男性 = 141;b值:女性 = 0.7,男性 = 0.9;c值:① 女性:血清肌酐≤ 0.7 mg/dl = −0.329;血清肌酐 > 0.7 mg/dl = −1.209 ② 男性:血清肌酐 ≤ 0.7 mg/dl = −0.411;血清肌酐 > 0.7 mg/dl = −1.209。

2.2.2. 终点事件

AVF初次失功的定义为① 透析时体外血流量持续<200 ml/min或者② 内瘘闭塞。应用血管超声检查评估AVF血流量及有无血栓等进一步确定AVF失功 [7]。

2.3. 统计学处理

应用SPSS软件(16.0, Inc., Chicago, IL)进行统计分析。符合正态分布的计量资料用± s表示,不符合正态分布的计量资料用中位数及百分位数表示,计数资料用百分率表示。计量资料的两组之间比较采用独立样本t检验或非参数秩和检验;计数资料的比较采用卡方检验。应用Kaplan-Meier生存曲线分析不同药物治疗组AVF的生存差异。Cox多因素回归模型分析AVF失功的影响因素,纳入分析的变量包括年龄、性别、吸烟、高血压、糖尿病、心血管病史、血尿酸、胆固醇、血钙、血磷、PTH、叶酸、他汀类药物、阿司匹林及RAAS阻断剂。计算风险比值(OR)及95%可信区间(95% CI),P < 0.05为差异有统计学意义。

3. 结果

3.1. 一般临床资料比较

336例患者的平均随访时间为16.0 ± 13.1个月,其中有72例(21.4%)患者发生了AVF的初次失功,失功中位时间为9个月(从1个月到29个月)。AVF失功组与通畅组相比,两组之间在年龄、性别、原发病、吸烟、高血压、糖尿病、心血管病史及用药情况(叶酸、他汀类药物、阿司匹林及RAAS阻断剂)、低密度脂蛋白、胆固醇、血钙及PTH等指标上均无统计学差异,但是AVF失功组血磷水平明显高于通畅组[2.03 (1.68~2.29) vs. 1.69 (1.38~2.12), p = 0.01],见表1

3.2. 生存分析

该研究人群12个月及24个月时AVF的通畅率为78.0%和66.0%。AVF初次失功比例分别在是否应用叶酸、他汀类药物、阿司匹林及RAAS阻断剂组无统计学差异(P > 0.05),图1。Kaplan-Meier生存曲线提示AVF 的通畅率分别在是否应用叶酸、他汀类药物及阿司匹林组无统计学差异,但在应用RAAS阻断剂组有统计学差异(P = 0.01),图2

3.3. Cox多因素回归分析

在校正了年龄、性别、吸烟、高血压、糖尿病、心血管病史、血尿酸、胆固醇、血钙、甲状旁腺激素等传统危险因素后,是否应用叶酸、他汀类药物、阿司匹林及RAAS阻断剂与AVF的失功均不相关,其OR值分别为0.66 (95% CI, 0.18~2.41)、1.31 (95%CI, 0.38~4.53)、0.60 (95% CI, 0.10~3.70)和1.31 (95% CI, 0.44~3.88),但是血磷升高(每升高1 mmol/L)为AVF失功的独立危险因素,其OR值为2.73 (95% CI, 1.38~5.42),表2

4. 讨论

血管通路是血液透析患者的生命线,AVF的功能直接影响患者透析及生活质量,甚至影响患者的生存。本研究在校正了传统危险因素后,统计学结果提示血磷升高为AVF失功的独立危险因素。

在健康成人中,磷的正常每日摄入量平均为1000 mg。其中60%~70%由胃肠道摄入,再被肾脏排泄或重吸收。体内绝大多数磷储存在骨骼中,其余则存在于细胞外液和细胞内空间 [8]。正常血清磷在1.13~1.78 mmol/L,体内磷代谢主要通过胃肠道吸收,并经由骨–肾–甲状旁腺轴分泌的激素通过反馈调节来控制 [9],并最终由肾脏排出体外。

随着肾脏功能的下降,调节钙磷代谢的反馈回路逐渐失调。血磷调节主要与成纤维细胞生长因子23 (fibroblast growth factor 23, FGF-23)及其辅因子Klotho、甲状旁腺激素(parathyroid hormone, PTH)和1,25-(OH)2D3(1,25 vitamin D)有关。多项研究表明,磷的积累发生在慢性肾脏病的早期,由于肾脏过滤和排泄磷的能力逐渐减弱,从CKD2期开始,FGF-23水平便开始升高,当GFR低于30 mL/min/1.73 m2时,机体对磷的调节开始失代偿,使血磷水平随着CKD的进展而持续增长 [10]。增加的血清磷,即使仍在正常范围内,但其与心血管的不良事件和终末期肾病的总生存率密切相关 [11] [12]。FGF-23属于成纤维细胞生长因子(FGFs)家族,是由成骨细胞和骨细胞合成,有FGF活化受体(FGFR)及Klotho蛋白结合位点,Klotho蛋白主要分布于肾小管上皮细胞、甲状旁腺、垂体等处,三者通过结合形成复合物发挥生物学效应,调节血磷在体内的平衡。其降低血磷的作用机制如下:1) FGF-23分别与FGFR1、Klotho蛋白形成复合物,激活Ras-丝裂原活化蛋白激酶(MAPK)通路,作用于远曲小管,通过旁分泌合成激素,再作用于近曲小管上皮细胞上的钠磷协同转运蛋白IIa (Na/Pi Type IIa),降低钠、磷主动转运,磷重吸收减少,尿磷增加 [13];2) FGF-23浓度升高可抑制1-α羟化酶,抑制1,25-(OH)2D3生成,降低血磷。1,25-(OH)2D3是FGF-23的反馈调节因子。当1,25-(OH)2D3含量减少时,由于胃肠道及肾脏等对磷重吸收下降导致血磷过低,又会使FGF-23生成减少 [14]。3) FGF-23-FGFR1-Klotho复合物增加可诱导第二信使促进PTH分泌,从而降低血磷。上述血磷调节途径可形成相互作用:慢性肾脏病患者血钙浓度低,导致PTH分泌增加,从而引起血磷降低,PTH的升高又会刺激1,25-(OH)2D3的生成,从而增加FGF-23的产生,FGF-23减少1α-羟化酶的表达,抑制1,25-(OH)2D3合成,使血钙降低,并进一步增加PTH,形成负反馈回路 [15]。有研究表明,虽然PTH与FGF-23均可通过Na/Pi Type IIa调节尿磷排泄,但PTH的调节更为迅速,主要负责短期血磷调节 [16]。在CKD5期,肾脏失去代偿能力,磷的正常代谢功能丧失,血磷不断升高,大大增加FGF-23分泌,而持续的低钙血症刺激甲状旁腺增生,最终的结果是血清激素及各种代谢因子水平紊乱和矿物代谢失调。

机体内过量的磷与血清游离钙结合,通过一系列作用先形成不稳定的无定型磷酸钙(amorphous calcium phosphate, ACP-1),再过度到稳定不易溶解的无定型磷酸钙(ACP-2),上述物质主要以羟基磷灰石的形式沉积在血管周围的细胞外基质中 [17]。在生理条件下,细胞外基质(extracellular matrix, ECM)中存在多种钙化抑制蛋白,如基质Gla蛋白(MGP)、胎球蛋白-a (或alpha 2-Heremans-Schmid糖蛋白,AHSG)和富含Gla蛋白(GRP),它们通过不同途径防止矿物质生长、聚集和沉淀,且具有协同作用 [18]。随着肾功能下降,钙磷负荷进行性增加,磷酸钙晶体可在血管平滑肌胶原蛋白附近细胞外囊泡EV中成核,在ECM中传递 [19],并由血管平滑肌细胞(vascular smooth muscle cells, VSMCs)释放,从而诱导VSMCs矿化,造成管腔狭窄。

当然,磷酸钙晶体直接沉积导致血管钙化(vascular calcification, VC)并不是一个孤立的过程,持续性微炎症也被认为是一个重要的病理生理因素。在一个关于血液透析的队列研究中,CKD患者的病变血管内发现了更明显的巨噬细胞浸润,血管壁内巨噬细胞的积累与磷酸钙沉积共存,并与钙化的各个阶段均有关 [20]。有研究表明,血清中存在的高促炎细胞因子IL-1β、IL-6和TNF-α与低抗炎参数(包括IL-2、IL-4、IL-5、IL-12)的组合与生存率降低相关 [21]。炎症反应促进血管钙化机制如下:1) 通过内质网应激途径增加无机磷酸盐的摄取2) 组织损伤部位的活化巨噬细胞可产生多种蛋白酶和细胞因子,增强弹性蛋白和胶原的降解。3) 巨噬细胞通过释放细胞因子,如TNFα、IL-1β等,从而增加VSMCs的成骨活动。上述过程导致细胞外基质重塑和结构改变的过程。持续性微炎症可增加磷酸盐晶体沉积,而矿化增加则再次触发了炎症反应。二者共同作用可使VSMCs骨软骨化 [22]。除上述主要途径外,近年来有研究证实,晚期糖基化终产物的受体(Receptor for advanced glycation end products, RAGE)也可影响以血管病理改变的疾病进展。血液中毒素清除障碍,过多毒素的积累可引起血管应激及炎症反应,激活血管壁RAGE配体,诱导促炎反应和组织损伤,加速动脉粥样硬化 [23]。最新动物实验表明,RAGE基因敲除的小鼠血管钙化面积较小。这些研究支持RAGE信号在小鼠VC过程中的有害作用 [24]。RAGE也可配体参与磷介导血管平滑肌细胞VSMCs向成骨细胞分化 [25]。RAGE活化诱导膜上烟酰胺腺嘌呤二核苷酸磷酸氧化酶的组装和线粒体活性氧簇(reactive oxygen species, ROS)产生,ROS进一步使Pi或RAGE配体/RAGE信号传导后上调钠磷共转运蛋白Pit-1的表达,导致Pit-1转录和翻译 [26],通过Pit-1增加磷的运输,介导的VSMC成骨细胞转化。此外,细胞凋亡增加、活性氧生成及一氧化氮生成受损也与导致内皮功能障碍,上述机制都是导致内瘘失功的原因。

本研究结果显示,是否应用叶酸、他汀类药物、阿司匹林及RAAS阻断剂与AVF的失功均不相关。但在诸多临床研究中,他汀类、抗血小板药物及鱼油等药物干预对AVF早期失功或促进内瘘成熟的效果都存在争议 [27] [28] [29] [30]。有研究表明,RAAS系统基因多态性与AVF失功有关 [31],RAAS阻断剂的使用可以促进AVF的成熟 [32]。叶酸价格低廉,安全性高,常用于治疗高同型半胱氨酸血症。我们既往研究数据显示,CKD早期患者高同型半胱氨酸血症的患病率高达45.6%,尿毒症患者可高达76.4% [33]。高同型半胱氨酸血症可通过氧化应激、内质网应激、同型半胱氨酸化及低甲基化等机制损伤内皮细胞 [34]。同时高同型半胱氨酸血症可以影响AVF的成熟 [35]。有回顾性研究显示,补充叶酸可以促进AVF的成熟 [36]。鉴于此次研究为单中心回顾性队列研究,研究证据力度有限,临床上仍需要高质量的RCT研究来进一步评估这些药物防治AVF失功的有效性。

目前临床上可以预测AVF失功的危险因素主要为女性、糖尿病、高龄及外周血管疾病等。我们前期研究显示,中国透析患者经积极的药物治疗后,血液透析及腹膜透析患者高磷血症患病率仍分别高达57.4%和47.4% [37]。高磷血症主要与尿毒症患者的血管钙化有关 [38] [39],血管钙化为AVF失功的独立危险因素 [40] [41]。但本研究也存在局限性,首先,该研究为单中心研究,纳入的病例数有限;其次,患者用药的具体疗程不详,可能存在其他影响AVF预后的药物并未纳入到该研究中;最后,该研究为回顾性研究,可能存在其他的混杂因素并未纳入到Cox多因素回归模型中进行分析,比如患者血管病理情况,仍需要前瞻性队列研究及RCT研究进一步证实。

5. 结论

综上所述,本研究结果显示叶酸、他汀类药物、阿司匹林及RAAS阻断剂的使用与前臂AVF的初次

Table 1. Baseline clinical data of the study population

表1. 研究人群的基线临床资料

Table 2. Cox regression analysis of factors influencing internal fistula loss

表2. 影响内瘘失功因素的Cox多因素回归分析

注:OR,风险比值;CI,可信区间;*OR1为校正了年龄、性别、高血压及糖尿病。†OR2为校正了年龄、性别、高血压、糖尿病、心血管病史、吸烟、血尿酸、总胆固醇、血钙、血磷、甲状旁腺激素、叶酸、他汀类药物、阿司匹林及RAAS阻断剂。

Figure 1. Comparison of the first power loss of internal fistula in different drug groups

图1. 不同药物组内瘘初次失功率比较

(a) 叶酸治疗组 (b) 他汀类药物治疗组 (c) 阿司匹林治疗组 (d) RAAS阻断剂治疗组

Figure 2. Comparison of patency rate of internal fistula in different drug groups. (Kaplan Meier survival curve)

图2. 不同药物组内瘘通畅率比较(Kaplan-Meier生存曲线)

失功均不相关,但是血磷升高为AVF失功的独立危险因素。因此,降磷治疗可能是防治AVF失功的一项重要措施,对延长自体内瘘使用寿命,保护血管资源,提高透析患者生活质量具有重要的临床意义。

基金项目

济南市科学技术发展计划–临床医学科技创新计划(项目编号201704086);山东省医药卫生科技发展计划(项目编号2017WS083)。

NOTES

*通讯作者。

参考文献

[1] Zhang, L., Wang, F., Wang, L., et al. (2012) Prevalence of Chronic Kidney Disease in China: A Cross-Sectional Survey. The Lancet, 379, 815-822.
https://doi.org/10.1016/S0140-6736(12)60033-6
[2] Bylsma, L.C., Gage, S.M., Reichert, H., et al. (2017) Arteriovenous Fistulae for Haemodialysis: A Systematic Review and Meta-Analysis of Effi-cacy and Safety Outcomes. European Journal of Vascular and Endovascular Surgery, 54, 513-522.
https://doi.org/10.1016/j.ejvs.2017.06.024
[3] Sheth, R.A., Freed, R., Tavri, S., et al. (2017) Nonmaturing Fis-tulae: Epidemiology, Possible Interventions, and Outcomes. Techniques in Vascular and Interventional Radiology, 20, 31-37.
https://doi.org/10.1053/j.tvir.2016.11.004
[4] Schinstock, C.A., Albright, R.C., Williams, A.W., et al. (2011) Outcomes of Arteriovenous Fistula Creation after the Fistula First Initiative. Clinical Journal of the American Society of Nephrology, 6, 1996-2002.
https://doi.org/10.2215/CJN.11251210
[5] Levey, A.S., Stevens, L.A., Schmid, C.H., et al. (2009) A New Equa-tion to Estimate Glomerular Filtration Rate. Annals of Internal Medicine, 150, 604-612.
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
[6] Kong, X., Ma, Y., Chen, J., et al. (2013) Evalu-ation of the Chronic Kidney Disease Epidemiology Collaboration Equation for Estimating Glomerular Filtration Rate in the Chinese Population. Nephrology Dialysis Transplantation, 28, 641-651.
https://doi.org/10.1093/ndt/gfs491
[7] 金其庄, 王玉柱, 叶朝阳, 等. 中国血液透析用血管通路专家共识(第2版)[J]. 中国血液净化, 2019, 18(6): 365-381.
[8] Chang, A.R. and Anderson, C. (2017) Dietary Phosphorus Intake and the Kidney. Annual Review of Nutrition, 37, 321-346.
https://doi.org/10.1146/annurev-nutr-071816-064607
[9] Schiavi, S.C. and Kumar, R. (2004) The Phosphatonin Pathway: New Insights in Phosphate Homeostasis. Kidney International, 65, 1-14.
https://doi.org/10.1111/j.1523-1755.2004.00355.x
[10] Bellasi, A., Mandreoli, M., Baldrati, L., et al. (2011) Chronic Kidney Disease Progression and Outcome According to Serum Phosphorus in Mild-to-Moderate Kidney Dys-function. Clinical Journal of the American Society of Nephrology, 6, 883-891.
https://doi.org/10.2215/CJN.07810910
[11] Scialla, J.J. and Wolf, M. (2014) Roles of Phosphate and Fibroblast Growth Factor 23 in Cardiovascular Disease. Nature Reviews Nephrology, 10, 268-278.
https://doi.org/10.1038/nrneph.2014.49
[12] Da, J., Xie, X., Wolf, M., et al. (2015) Serum Phosphorus and Pro-gression of CKD and Mortality: A Meta-Analysis of Cohort Studies. American Journal of Kidney Diseases, 66, 258-265.
https://doi.org/10.1053/j.ajkd.2015.01.009
[13] Hu, M.C., Shiizaki, K., Kuro-o, M., et al. (2013) Fibroblast Growth Factor 23 and Klotho: Physiology and Pathophysiology of an Endocrine Network of Mineral Metabolism. Annual Review of Physiology, 75, 503-533.
https://doi.org/10.1146/annurev-physiol-030212-183727
[14] Shimada, T., Hasegawa, H., Yamazaki, Y., et al. (2004) FGF-23 Is a Potent Regulator of Vitamin D Metabolism and Phosphate Homeostasis. Journal of Bone and Mineral Research, 19, 429-435.
https://doi.org/10.1359/JBMR.0301264
[15] Hruska, K.A., Sugatani, T., Agapova, O., et al. (2017) The Chronic Kidney Disease—Mineral Bone Disorder (CKD-MBD): Advances in Pathophysiology. Bone, 100, 80-86.
https://doi.org/10.1016/j.bone.2017.01.023
[16] Baum, M., Schiavi, S., Dwarakanath, V., et al. (2005) Effect of Fibroblast Growth Factor-23 on Phosphate Transport in Proximal Tubules. Kidney International, 68, 1148-1153.
https://doi.org/10.1111/j.1523-1755.2005.00506.x
[17] Ewence, A.E., Bootman, M., Roderick, H.L., et al. (2008) Calcium Phosphate Crystals Induce Cell Death in Human Vascular Smooth Muscle Cells: A Potential Mechanism in Atherosclerotic Plaque Destabilization. Circulation Research, 103, e28-e34.
https://doi.org/10.1161/CIRCRESAHA.108.181305
[18] Viegas, C.S., Rafael, M.S., Enriquez, J., et al. (2015) Gla-Rich Protein Acts as a Calcification Inhibitor in the Human Cardiovascular System. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 399-408.
https://doi.org/10.1161/ATVBAHA.114.304823
[19] Kapustin, A.N., Davies, J.D., Reynolds, J.L., et al. (2011) Calcium Regulates Key Components of Vascular Smooth Muscle Cell-Derived Matrix Vesicles to Enhance Minerali-zation. Circulation Research, 109, e1-e12.
https://doi.org/10.1161/CIRCRESAHA.110.238808
[20] Chatrou, M.L., Cleutjens, J.P., van der Vusse, G.J., et al. (2015) Intra-Section Analysis of Human Coronary Arteries Reveals a Potential Role for Micro-Calcifications in Mac-rophage Recruitment in the Early Stage of Atherosclerosis. PLoS ONE, 10, e0142335.
https://doi.org/10.1371/journal.pone.0142335
[21] Cohen, S.D., Phillips, T.M., Khetpal, P., et al. (2010) Cytokine Patterns and Survival in Haemodialysis Patients. Nephrology Dialysis Transplantation, 25, 1239-1243.
https://doi.org/10.1093/ndt/gfp625
[22] Yamada, S. and Giachelli, C.M. (2017) Vascular Calcification in CKD-MBD: Roles for Phosphate, FGF23, and Klotho. Bone, 100, 87-93.
https://doi.org/10.1016/j.bone.2016.11.012
[23] Belmokhtar, K., Ortillon, J., Jaisson, S., et al. (2019) Receptor for Advanced Glycation end Products: A Key Molecule in the Genesis of Chronic Kidney Disease Vascular Calcification and a Potential Modulator of Sodium Phosphate Co-Transporter PIT-1 Expression. Nephrology Dialysis Transplantation, 34, 2018-2030.
https://doi.org/10.1093/ndt/gfz012
[24] Belmokhtar, K., Robert, T., Ortillon, J., et al. (2016) Signaling of Serum Amyloid a through Receptor for Advanced Glycation End Products as a Possible Mechanism for Uremia-Related Ath-erosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 800-809.
https://doi.org/10.1161/ATVBAHA.115.306349
[25] Aleshin, A., Ananthakrishnan, R., Li, Q., et al. (2008) RAGE Modulates Myocardial Injury Consequent to LAD Infarction via Impact on JNK and STAT Signaling in a Murine Model. The American Journal of Physiology—Heart and Circulatory Physiology, 294, H1823-H1832.
https://doi.org/10.1152/ajpheart.01210.2007
[26] Chavkin, N.W., Chia, J.J., Crouthamel, M.H., et al. (2015) Phosphate Uptake-Independent Signaling Functions of the Type III Sodium-Dependent Phosphate Transporter, PiT-1, in Vascular Smooth Muscle Cells. Experimental Cell Research, 333, 39-48.
https://doi.org/10.1016/j.yexcr.2015.02.002
[27] Coleman, C.I., Tuttle, L.A., Teevan, C., et al. (2010) Antiplatelet Agents for the Prevention of Arteriovenous Fistula and Graft Thrombosis: A Meta Analysis. International Journal of Clinical Practice, 64, 1239-1244.
https://doi.org/10.1111/j.1742-1241.2009.02329.x
[28] Pisoni, R., Barker-Finkel, J. and Allo, M. (2010) Statin Therapy Is Not Associated with Improved Vascular Access Outcomes. Clinical Journal of the American Society of Nephrology, 5, 1447-1450.
https://doi.org/10.2215/CJN.02740310
[29] Martinez, L., Duque, J.C., Escobar, L.A., et al. (2016) Distinct Impact of Three Different Statins on Arteriovenous Fistula Outcomes: A Retrospective Analysis. The Journal of Vascular Access, 17, 471-476.
https://doi.org/10.5301/jva.5000612
[30] Irish, A.B., Viecelli, A.K., Hawley, C.M., et al. (2017) Effect of Fish Oil Supplementation and Aspirin Use on Arteriovenous Fistula Failure in Patients Requiring Hemodialysis: A Randomized Clinical Trial. JAMA Internal Medicine, 177, 184-193.
https://doi.org/10.1001/jamainternmed.2016.8029
[31] Chen, Y.W., Wu, Y.T., Lin, J.S., et al. (2016) Association of Genetic Polymorphisms of Renin-Angiotensin-Aldosterone System-Related Genes with Arterio-Venous Fistula Malfunction in Hemodialysis Patients. International Journal of Molecular Sciences, 17, 833.
https://doi.org/10.3390/ijms17060833
[32] Moon, J.Y., Jeong, K.H., Paik, S.S., et al. (2009) Arteriovenous Fistula Patency Associated with Angiotensin-Converting Enzyme I/D Polymorphism and ACE Inhibition or AT1 Receptor Blockade. Nephron Clinical Practice, 111, c110-c116.
https://doi.org/10.1159/000191201
[33] Kong, X., Ma, X., Zhang, C., et al. (2017) Hyperhomocysteinemia Increases the Risk of Chronic Kidney Disease in a Chinese Middle-Aged and Elderly Population-Based Cohort. International Urology and Nephrology, 49, 661-667.
https://doi.org/10.1007/s11255-016-1452-3
[34] Yi, F. and Li, P.L. (2008) Mechanisms of Homocysteine-Induced Glomerular Injury and Sclerosis. American Journal of Nephrology, 28, 254-264.
https://doi.org/10.1159/000110876
[35] Tai, H.C., Yang, W.C., Chen, T.W., et al. (2005) Are Homocysteine and MTHFR Genotype Polymorphism Associated with Arteriovenous Fistula Patency. American Journal of Kidney Diseases, 46, 993-994.
https://doi.org/10.1053/j.ajkd.2005.08.027
[36] Righetti, M., Ferrario, G., Serbelloni, P., et al. (2009) Some Old Drugs Improve Late Primary Patency Rate of Native Arteriovenous Fistulas in Hemodialysis Patient. Annals of Vascular Surgery, 23, 491-497.
https://doi.org/10.1016/j.avsg.2008.08.033
[37] Kong, X., Zhang, L., Zhang, L., et al. (2012) Mineral and Bone Disorder in Chinese Dialysis Patients: A Multicenter Study. BMC Nephrology, 13, 116.
https://doi.org/10.1186/1471-2369-13-116
[38] Nitta, K., Akiba, T., Uchida, K., et al. (2003) The Progression of Vascular Calcification and Serum Osteoproteger in Levels in Patients on Long-Term Hemodialysis. American Journal of Kidney Diseases, 42, 303-309.
https://doi.org/10.1016/S0272-6386(03)00655-3
[39] Ekim, M., Yüksel, S., Fit?z, S., et al. (2006) Systemic Vascular Calcification with Retinal Calcification in an Adolescent Treated with Long-Term Peritoneal Dialysiy. Pediatric Nephrology, 21, 1915-1916.
https://doi.org/10.1007/s00467-006-0200-9
[40] Jin, C.S., Eun, Y.H., Soo, K.Y., et al. (2015) Pre-Existing Arterial Micro-Calcification Predicts Primary Unassisted Arteriovenous Fistula Failure in Incident Hemodialysis Patients. Seminars in Dialysis, 28, 665-669.
https://doi.org/10.1111/sdi.12365
[41] Young, L.J. and Ok, K.Y. (2017) Pre-Existing Arterial Pathologic Changes Affecting Arteriovenous Fistula Patency and Cardiovascular Mortality in Hemodialysis Patients. The Korean Journal of Internal Medicine, 32, 790-797.
https://doi.org/10.3904/kjim.2017.268