|
[1]
|
TRENBERTH, K. E., FASULLO, J. T., KIEHL, J. T., et al. Earth’s global energy budget. Bulletin of the American Meteoro-logical Society, 2009, 90(3): 311-323. [Google Scholar] [CrossRef]
|
|
[2]
|
ZHU, Z., PIAO, S., MYNENI, R. B., et al. Greening of the earth and its drivers. Nature Climate Change, 2016, 6(8): 791-795. [Google Scholar] [CrossRef]
|
|
[3]
|
莫兴国. 区域蒸发研究综述[J]. 水科学进展, 1996(2): 180-185.
MO Xingguo. Review on regional evaporation. Advances in Water Science, 1996(2): 180-185. (in Chinese)
|
|
[4]
|
JIMENEZ, C., PRIGENT, C., MUELLER, B., et al. Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research, 2011, 116: D02102.[CrossRef]
|
|
[5]
|
WANG, K., DICKINSON, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 2012, 50, RG2005.[CrossRef]
|
|
[6]
|
MUELLER, B., HIRSCHI, M., JIMENEZ, C., et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 2013, 17(10): 3707-3720. [Google Scholar] [CrossRef]
|
|
[7]
|
PEEL, M. C., MCMAHON, T. A. Estimating evaporation based on stan-dard meteorological data progress since 2007. Progress in Physical Geography, 2014, 38(2): 241-250. [Google Scholar] [CrossRef]
|
|
[8]
|
BRUTSAERT, W., PARLANGE, M. B. Hydrologic cycle explains the evaporation paradox. Nature, 1998, 396(6706): 30. [Google Scholar] [CrossRef]
|
|
[9]
|
RAMIREZ, J. A., HOBBINS, M. T., BROWN, T. C., et al. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophysical Research Letters, 2005, 32(15): L15401. [Google Scholar] [CrossRef]
|
|
[10]
|
YANG, D., SUN, F., LIU, Z., et al. Interpreting the complementary rela-tionship in non-humid environments based on the Budyko and Penman hypotheses. Geophysical Research Letters, 2006, 33(18): L18402. [Google Scholar] [CrossRef]
|
|
[11]
|
HAN, S., HU, H., YANG, D., et al. A complementary relationship evaporation model referring to the Granger model and the advection-aridity model. Hydrological Processes, 2011, 25(13): 2094-2101. [Google Scholar] [CrossRef]
|
|
[12]
|
LIU, X., LIU, C., BRUTSAERT, W., et al. Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle. Water Resources Research, 2016, 52(12): 9511-9521. [Google Scholar] [CrossRef]
|
|
[13]
|
KAHLER, D. M., BRUTSAERT, W. Complementary relationship between daily evaporation in the environment and pan evaporation. Water Resources Research, 2006, 42: W05413.[CrossRef]
|
|
[14]
|
SZILAGYI, J. On the inherent asymmetric nature of the complementary re-lationship of evaporation. Geophysical Research Letters, 2007, 34: L02405.[CrossRef]
|
|
[15]
|
HAN, S., HU, H., TIAN, F., et al. A nonlinear function approach for the normalized complementary relationship evaporation model. Hydrological Processes, 2012, 26(26): 3973-3981. [Google Scholar] [CrossRef]
|
|
[16]
|
AMINZADEH, M., RODERICK, M. L., OR, D., et al. A generalized complemen-tary relationship between actual and potential evaporation defined by a reference surface temperature. Water Resources Re-search, 2016, 52(1): 385-406. [Google Scholar] [CrossRef]
|
|
[17]
|
BRUTSAERT, W. A generalized complementary principle with physical constraints for land-surface evaporation. Water Resources Research, 2015, 51(10): 8087-8093. [Google Scholar] [CrossRef]
|
|
[18]
|
ZHANG, L., CHENG, L., BRUTSAERT, W., et al. Estimation of land sur-face evaporation using a generalized nonlinear complementary relationship. Journal of Geophysical Research, 2017, 122(3): 1475-1487. [Google Scholar] [CrossRef]
|
|
[19]
|
BRUTSAERT, W., LI, W., TAKAHASHI, A., et al. Nonlinear advection-aridity method for landscape evaporation and its application during the growing season in the southern Loess Plateau of the Yellow River basin. Water Resources Research, 2017, 53(1): 270-282. [Google Scholar] [CrossRef]
|
|
[20]
|
BRUTSAERT, W., CHENG, L., ZHANG, L., et al. Spatial distribution of global landscape evaporation in the early twenty first century by means of a generalized complementary approach. Journal of Hydrometeorology, 2020, 21: 287-298.[CrossRef]
|
|
[21]
|
李修仓. 中国典型流域实际蒸散发的时空变异研究[D]. 博士学位论文. 南京: 南京信息工程大学, 2013.
LI Xiucang. Spatio-temporal variation of actual evapotranspiration in the Pearl, Haihe and Tarim river basins of China. PhD Thesis. Nanjing: Nanjing University of Information Science and Technology, 2013. (in Chinese)
|
|
[22]
|
余欣, 杨汉波, 吕华芳, 黄飞燕. 基于广义蒸发互补理论的塔里木河流域绿洲实际蒸散发变化及其归因分析[J]. 水利水电技术, 2020(3): 1-17.
YU Xin, YANG Hanbo, LV Huafang, and HUANG Feiyan. Generalized evapotranspiration complementarity theory-based analysis on variation of actual evapotranspiration in oases of Tarim River basin and its attribution. Water Resources and Hy-dropower Engineering, 2020(3): 1-17. (in Chinese)
http://kns.cnki.net/kcms/detail/11.1757.TV.20191014.1634.008.html
|
|
[23]
|
BOUCHET, R. J. Évapotranspirationréelle evapo-transpiration potentielle, signification climatique. Wallingford: IAHS Publications, 1963, 62: 134-142.
|
|
[24]
|
MARTENS, B., MIRALLES, D. G., LIEVENS, H., et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscien-tific Model Development, 2017, 10: 1903-1925.[CrossRef]
|
|
[25]
|
HE, J., YANG, K., TANG, W. LU, H., QIN, J., CHEN, Y. Y., and LI, X. The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 2020, 7: 25.[CrossRef] [PubMed]
|
|
[26]
|
JUNG, M. M., REICHSTEIN, H. A., MARGOLIS, A., CESCATTI, A. D., RICHARDSON, ARAIN, M. A., et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteoro-logical observations. Journal of Geophysical Research, 2011, 116: G00J07.[CrossRef]
|
|
[27]
|
ZHANG, Y., PEÑA-ARANCIBIA, J. L., MCVICAR, T. R., CHIEW, F. H. S., VAZE, J., LIU, C., et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 2016, 6: 19124.[CrossRef] [PubMed]
|
|
[28]
|
RIENECKER, M. M., SUAREZ, M. J., GELARO, R., et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 2011, 24(14): 3624-3648. [Google Scholar] [CrossRef]
|
|
[29]
|
DEE, D. P., UPPALA, S. M., SIMMONS, A. J., et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Me-teorological Society, 2011, 137(656): 553-597. [Google Scholar] [CrossRef]
|
|
[30]
|
ZENG, Z., PIAO, S., LIN, X., YIN, G., PENG, S., CIAIS, P., et al. Global evapo-transpiration over the past three decades: Estimation based on the water balance equation combined with empirical models. En-vironmental Research Letters, 2012, 7(1): 014026. [Google Scholar] [CrossRef]
|
|
[31]
|
李婷婷. 中国黄淮海地区土壤蒸发和植被蒸腾的遥感反演[D]. 硕士学位论文. 天津: 天津大学, 2014.
LI Tingting. Retrieval of evaporation and transpiration by using remote sensing model for Huang-Huai-Hai Region in China. Master’s Thesis. Tianjin: Tianjin University, 2014. (in Chinese)
|
|
[32]
|
徐兴奎. 西北干旱和半干旱地区地表蒸发计算方法评估应用[J]. 气候与环境研究, 2011, 16(3): 329-336.
XU Xingkui. Evaluation for a method of evapotranspiration in arid and semi-arid regions of northwest China. Climatic and En-vironmental Research, 2011, 16(3): 329-336. (in Chinese)
|