基于V形孔阵结构薄膜的光学与磁光特性研究
Research on Optical and Magneto-Optical Characteristics of Thin Films Based on V-Shaped Arrays
DOI: 10.12677/OE.2020.102004, PDF, 下载: 715  浏览: 1,667  科研立项经费支持
作者: 赵盈盈, 王 伟, 郭怀永, 王冬雪, 徐 波, 田宏玉, 李道勇*:临沂大学物理与电子工程学院,山东 临沂
关键词: 时域有限差分法光透射法拉第旋转Finite-Difference Time-Domain Method Light Transmission Faraday Rotation
摘要: 本文利用时域有限差分法(FDTD),计算了不同阵列周期、介质层厚度、介质折射率对V形孔阵薄膜的透射率和法拉第角。计算结果表明,透射谱和法拉第谱随阵列周期的增大会发生明显的红移;介质层的引入提高了透射率和法拉第角,并且可以通过改变介质层(NDL)的折射率和厚度来调控透射谱和法拉第谱,这些结果对磁光器件设计具有重要的意义。
Abstract: In this paper, the finite-difference time-domain method (FDTD) is used to calculate the transmit-tance and Faraday angle of the V-shaped hole arrays film with different array periods, dielectric layer thickness, and dielectric refractive index. The calculation results show that the transmission spectrum and Faraday spectrum will obviously redshift with the increase of the array period. The introduction of the dielectric layer improves the transmittance and Faraday angle, and the trans-mission spectrum and Faraday spectrum can be adjusted by changing the refractive index and thickness of the dielectric layer (NDL). These results have important implications for the design of magneto-optical devices.
文章引用:赵盈盈, 王伟, 郭怀永, 王冬雪, 徐波, 田宏玉, 李道勇. 基于V形孔阵结构薄膜的光学与磁光特性研究[J]. 光电子, 2020, 10(2): 31-37. https://doi.org/10.12677/OE.2020.102004

参考文献

[1] Matsumoto, A., Ikeda, S., Harada, A. and Kataoka, K. (2003) Glucose Responsive Polymer Bearing a Novel Phenyl Borate Derivative as a Glucose-Sensing Moiety Operating at Physiological pH Conditions. Biomacromolecules, 4, 1410-1416.
https://doi.org/10.1021/bm034139o
[2] Li, L., Jiang, G., Du, X., Chen, H., Liu, Y., Huang, Q., Kong, X. and Yao, J. (2015) Preparation of Glucose-Responsive and Fluorescent Micelles via a Combination of Raft Polymerization and Chemoenzymatic Transesterification for Controlled Release of Insulin. RSC Advances, 5, 75766-75772.
https://doi.org/10.1039/C5RA15281J
[3] Jiang, G., Jiang, T., Chen, H., Li, L., Liu, Y., Zhou, H., Feng, Y. and Zhou, J. (2015) Preparation of Multi-Responsive Micelles for Controlled Release of Insulin. Colloid and Polymer Science, 293, 209-215.
https://doi.org/10.1007/s00396-014-3394-6
[4] Temnov, V.V. (2012) Ultrafast Acousto-Magneto-Plasmonics. Nature Photonics, 6, 728-736.
https://doi.org/10.1038/nphoton.2012.220
[5] Banthí, J.C., Meneses-Rodriguez, D., Garcia, F., Gonzalez, M.U., Garcia-Martin, A., Cebollada, A. and Armelles, G. (2012) High Magneto-Optical Activity and Low Optical Losses in Metal-Dielectric Au/Co/Au-SiO2 Magneto Plasmonic Nano Disks. Advanced Materials, 24, OP36-OP41.
https://doi.org/10.1002/adma.201103634
[6] Lomakin, V. and Michielssen, E. (2005) Enhanced Transmission through Metallic Plates Perforated by Arrays of Subwavelength Holes and Sandwiched between Dielectric Slabs. Physical Review B, 71, Article ID: 235117.
https://doi.org/10.1103/PhysRevB.71.235117
[7] van der Molen, K.L., Segerink, F.B. and Hulst, N.F.V. (2004) Influence of Hole Size on the Extraordinary Transmission through Subwavelength Hole Arrays. Applied Physics Letters, 85, 4316-4318.
https://doi.org/10.1063/1.1815379
[8] Shi, X.L., Thornton, R.L., et al. (2002) A Nano-Aperture with 1000× Power Throughput Enhancement for Very Small Aperture Laser System (VSAL). Proceedings of SPIE, 4342, 320-326.
https://doi.org/10.1117/12.453378
[9] Xu, J.Y., Xu, T.J., et al. (2005) Design Tips of Nanoapertures with Strong Field Enhancement and Proposal of Novel L-Shaped Aperture. Optical Engineering, 44, Article ID: 0018001.
https://doi.org/10.1117/1.1825446
[10] Wang, Y.K., Qin, Y. and Zhang, Z.Y. (2014) Extraordinary Optical Transmission Property of X-Shaped Plasmonic Nanohole Arrays. Plasmonics, 9, 203-207.
https://doi.org/10.1007/s11468-013-9613-z
[11] 王国军, 吴世法, 李旭峰, 徐晨彪, 潘石. 在A-SNOM中L-V形纳米小孔的优化设计[J]. 电子显微学报, 2009, 28(2): 122-126.
[12] Belotelov, V.I., Doskolovich, L.L. and Zvezdin, A.K. (2007) Extraordinary Magneto-Optical Effects and Transmission through Metal-Dielectric Plasmonic Systems. Physical Review Letters, 98, Article ID: 077401.
https://doi.org/10.1103/PhysRevLett.98.077401
[13] Kofke, M.J., Waldeck, D.H., Fakhraai, Z., Ip, S. and Walker, G.C. (2009) The Effect of Periodicity on the Extraordinary Optical Transmission of Annular Aperture Arrays. Applied Physics Letters, 94, Article ID: 023104.
https://doi.org/10.1063/1.3067835
[14] Wu, S., Wang, J., Yin, X.G., Li, J.Q., Zhu, D., Liu, S.Q. and Zhu, Y.Y. (2009) Enhanced Optical Transmission: Role of the Localized Surface Plasmon. Applied Physics Letters, 94, Article ID: 023101.
[15] Kreilkamp, L.E., Belotelov, V.I., Chin, J.Y., Neutzner, S., Dregely, D., Wehlus, T., Akimov, I.A., Bayer, M., Stritzker, B. and Giessen, H. (2013) Waveguide-Plasmon Polaritons Enhance Transverse Magneto-Optical Kerr Effect. Physical Review X, 3, Article ID: 041019.
https://doi.org/10.1103/PhysRevX.3.041019
[16] van der Molen, K.L., Koerkamp, K.K., Enoch, S., Segerink, F.B., van Hulst, N.F. and Kuipers, L. (2005) Role of Shape and Localized Resonances in Extraordinary Transmission through Periodic Arrays of Subwavelength Holes: Experiment and Theory. Physical Review B, 72, Article ID: 045421.
https://doi.org/10.1103/PhysRevB.72.045421
[17] Belotelov, V.I., Doskolovich, L.L. and Zvezdin, A.K. (2007) Extraordinary Magneto-Optical Effects and Transmission through Metal-Dielectric Plasmonic Systems. Physical Review Letters, 98, Article ID: 077401.
https://doi.org/10.1103/PhysRevLett.98.077401