不锈钢支架的塑性变形量对血管壁细胞行为的影响
The Effect of Plastic Deformation of Stainless Steel Stent on the Behavior of Vascular Wall Cells
DOI: 10.12677/MS.2020.106056, PDF, 下载: 452  浏览: 635  国家自然科学基金支持
作者: 胡慧怡, 谭建英, 牟小辉, 翁亚军, 陈俊英*:西南交通大学材料科学与工程学院,四川 成都
关键词: 血管支架塑性变形医用不锈钢血管壁细胞Vascular Stent Plastic Deformation Medical Stainless Steel Cells of the Vessel Wall
摘要: 心血管疾病介入治疗中大量使用金属支架。支架撑开后,各位置塑性变形量不同,与血管壁/细胞直接接触并发生相互作用时,金属塑性变形量将对表面血管壁细胞行为产生影响。基于此,本文以生物医用不锈钢为对象,针对血管支架扩张后的塑性变形,设定不同变形量ε (20%、60%、100%),并借助万能试验机制备相应样品;通过光学显微镜(OM)、扫描电子显微镜(SEM)、台阶仪等对样品表面进行材料形貌表征;通过水接触角测试、表面能分量计算等对样品表面进行理化性质测定;通过荧光染色法和CCK-8 (Cell Counting Kit-8)细胞活性检测对血管壁细胞的生长行为进行评价。结果显示,因塑性变形量的差异,内皮细胞在ε = 60%时细胞活性最好,平滑肌细胞的细胞活性没有明显差异;当ε > 60%时,内皮细胞与平滑肌细胞的生长方向均趋向于与拉伸方向平行。本文研究结果提示,对血管支架进行恰当构型设计,调整服役过程中支架不同位置的塑性变形量,改善血管壁细胞行为,具有重要意义。
Abstract: Metal stents are widely used in interventional therapy of cardiovascular diseases. The amount of plastic deformation is different in each position when the stent is expanded in the vessel. When the stent is in direct contact with the cells of the vessel wall and interacts with them, the amount of plas-tic deformation of the metal will affect the behavior of the cells of the vessel wall. Based on this, this paper takes biomedical stainless steel as the object, and sets different amounts of deformation (20%, 60%, 100%) for the plastic deformation of stent after expansion. The universal testing machine was used to stretch the biomedical stainless steel. The surface morphology of the samples was characterized by optical microscope (OM), scanning electron microscope (SEM) and step measuring instrument. The physical and chemical properties of the surface of the sample were measured by water contact angle (WCA) the calculation of surface energy component. The growth behavior of the cells of the vessel wall was evaluated by fluorescence staining and cell counting kit-8 (CCK-8). The results show that the endothelial cells have the best activity when the deformation is 60%, but the smooth muscle cells have no significant difference. When the deformation is more than 60%, the growth direction of endothelial cells and smooth muscle cells tend to be parallel to the stretching direction. The results of this study suggest that it is of great significance to design the appropriate configuration of the stent, as it can adjust the plastic deformation of different positions of the stent during the service process, and improve the cell behavior on the vascular wall.
文章引用:胡慧怡, 谭建英, 牟小辉, 翁亚军, 陈俊英. 不锈钢支架的塑性变形量对血管壁细胞行为的影响[J]. 材料科学, 2020, 10(6): 460-471. https://doi.org/10.12677/MS.2020.106056

参考文献

[1] 马丽媛, 吴亚哲, 王文, 等. 《中国心血管病报告2017》要点解读[J]. 中国心血管杂志, 2018, 23(1): 3-6.
[2] 王晓, 冯海全, 王文雯, 等. 球囊扩张式冠脉支架生物力学性能研究[J]. 中国生物医学工程学报, 2013, 32(2): 203-210.
[3] Eshghi, N., Hojjati, M.H., Imani, M., et al. (2011) Finite Element Analysis of Mechanical Behaviors of Coronary Stent. Procedia Engineering, 10, 3056-3061.
https://doi.org/10.1016/j.proeng.2011.04.506
[4] 任庆帅, 任希力, 彭坤, 等. 血管支架在真实狭窄血管模型中扩张过程的模拟研究[J]. 医用生物力学, 2015, 30(6): 488-494.
[5] Ivanovska, I.L., Shin, J.W., Swift, J., et al. (2015) Stem Cell Mechanobiology: Diverse Lessons from Bone Marrow. Trends in Cell Biology, 25, 523-532.
https://doi.org/10.1016/j.tcb.2015.04.003
[6] Peyton, S.R. and Putnam, A.J. (2005) Extracellular Matrix Rigidity Governs Smooth Muscle Cell Motility in a Biphasic Fashion. Journal of Cellular Physiology, 204, 198-209.
https://doi.org/10.1002/jcp.20274
[7] Zaari, N., Rajagopalan, P., Kim, S.K., et al. (2004) Photopolymerization in Microfluidic Gradient Generators: Microscale Control of Substrate Compliance to Manipulate Cell Response. Advanced Materials, 16, 2133-2137.
https://doi.org/10.1002/adma.200400883
[8] Gray, D.S., Tien, J. and Chen, C.S. (2003) Repositioning of Cells by Mechanotaxis on Surfaces with Micropatterned Young’s Modulus. Journal of Biomedical Materials Research Part A, 66, 605-614.
https://doi.org/10.1002/jbm.a.10585
[9] Lo, C.M., Wang, H.B., Dembo, M., et al. (2000) Cell Movement Is Guided by the Rigidity of the Substrate. Biophysical Journal, 79, 144-152.
https://doi.org/10.1016/S0006-3495(00)76279-5
[10] Phd, J.H.-C.W., Yang, G. and Li, Z. (2005) Controlling Cell Responses to Cyclic Mechanical Stretching. Annals of Biomedical Engineering, 33, 337-342.
https://doi.org/10.1007/s10439-005-1736-8
[11] Kapur, S., Baylink, D.J. and Lau, K.-H.W. (2003) Fluid Flow Shear Stress Stimulates Human Osteoblast Proliferation and Differentiation through Multiple Interacting and Competing Signal Transduction Pathways. Bone, 32, 241-251.
https://doi.org/10.1016/S8756-3282(02)00979-1
[12] Kurpinski, K., Chu, J., Hashi, C., et al. (2006) Anisotropic Mechanosensing by Mesenchymal Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 16095-16100.
https://doi.org/10.1073/pnas.0604182103
[13] Zhang, B., Luo, Q., Chen, Z., et al. (2015) Cyclic Mechanical Stretching Promotes Migration But Inhibits Invasion of Rat Bone Marrow Stromal Cells. Stem Cell Research, 14, 155-164.
https://doi.org/10.1016/j.scr.2015.01.001
[14] Virjula, S., Zhao, F., Leivo, J., et al. (2017) The Effect of Equiaxial Stretching on the Osteogenic Differentiation and Mechanical Properties of Human Adipose Stem Cells. Journal of the Mechanical Behavior of Biomedical Materials, 72, 38-48.
https://doi.org/10.1016/j.jmbbm.2017.04.016
[15] Vorselen, D., Roos, W.H., Mackintosh, F.C., et al. (2013) The Role of the Cytoskeleton in Sensing Changes in Gravity by Nonspecialized Cells. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 28, 536-547.
https://doi.org/10.1096/fj.13-236356
[16] Zhang, C., Zhou, L.W., Zhang, F., et al. (2017) Mechanical Remodeling of Normally Sized Mammalian Cells under a Gravity Vector. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 31, 802-813.
https://doi.org/10.1096/fj.201600897RR
[17] Arima, Y. and Iwata, H. (2007) Effect of Wettability and Surface Functional Groups on Protein Adsorption and Cell Adhesion Using Well-Defined Mixed Self-Assembled Monolayers. Biomaterials, 28, 3074-3082.
https://doi.org/10.1016/j.biomaterials.2007.03.013
[18] 林志立, 梁建平, 庄秀妹. 亲水性钛表面微纳米形貌对人牙周膜成纤维细胞增殖与成骨分化的影响[J]. 中国口腔种植学杂志, 2018, 23(3): 101-104.