滑动速度对铜基石墨复合材料摩擦特性影响的数值模拟
Numerical Simulation of the Effect of Sliding Speeds on Tribological Properties of Copper Matrix Graphite Composite
DOI: 10.12677/MS.2020.106057, PDF, 下载: 457  浏览: 665  科研立项经费支持
作者: 马刘洋, 陈亚军, 解 挺:合肥工业大学摩擦学研究所,安徽 合肥
关键词: 滑动速度铜基石墨复合材料离散元石墨磨损Sliding Speed Copper Matrix Graphite Composite Discrete Element Graphite Wear
摘要: 采用离散元软件建立了铜基石墨复合材料与45钢滑动摩擦模型,研究了滑动速度对摩擦面上石墨动态演变和铜基石墨复合材料摩擦学行为的影响。结果表明:摩擦面上石墨颗粒经历形成和稳定二个阶段,滑动速度越大,摩擦面上石墨颗数越快达到动态稳定状态。滑动速度增大,石墨润滑层难以在磨损表面有效形成,加速了其脱落的进程,导致摩擦因数增大,磨损量增加。
Abstract: It was studied that effect of sliding velocity on the dynamic evolution of graphite on the friction surface and tribological behavior of copper matrix graphite composite by discrete element software. The sliding friction model has been established between the copper matrix graphite composite with 45 steel. It is showed that graphite particles on the friction surface undergo two stages of formation and stabilization. The higher the sliding speed is, the faster the number of graphite particles on the friction surface reaches the dynamic stability state. Under the higher speed, the graphite lubrication layer is difficult to form effectively on the worn surface, accelerating the process of its shedding. As a final result, the friction coefficient is bigger and the wearing capacity is more.
文章引用:马刘洋, 陈亚军, 解挺. 滑动速度对铜基石墨复合材料摩擦特性影响的数值模拟[J]. 材料科学, 2020, 10(6): 472-476. https://doi.org/10.12677/MS.2020.106057

参考文献

[1] 邹芹, 黄洪涛, 王明智. 金属基滑动轴承材料研究进展[J]. 燕山大学学报, 2016, 40(1): 1-8.
[2] 陈爱华, 闫晨, 孟志立. 铜基复合材料制备及研究新进展[J]. 中国冶金, 2019, 29(2): 7-11.
[3] 刘林, 朱林英, 易茂中, 等. 镀铜石墨粉含量对Cu/C复合材料组织和性能的影响[J]. 碳素技术, 2017, 36(6): 29-33.
[4] 商剑, 张越, 刘亮. 含石墨转移层对铜-二氧化硅/钢摩擦磨损行为的影响[J]. 润滑与密封, 2015, 40(6): 46-49.
[5] 陈如诗, 肖柱, 戴杰, 等. 铜–石墨复合材料性能与石墨形状和粒径的相关性研究[J]. 有色金属材料与工程, 2019, 40(5): 1-7.
[6] Moustafa, S.F., El-Badry, S.A., Sanad, A.M., et al. (2002) Friction and Wear of Copper-Graphite Composites Made with Cu-Coated and Uncoated Graphite Powders. Wear, 253, 699-710.
https://doi.org/10.1016/S0043-1648(02)00038-8
[7] 冉旭, 黄显峰, 段利利, 等. 铜–石墨复合材料的摩擦学性能和磨损机理[J]. 材料导报, 2012, 26(8): 33-38.
[8] Ma, W.L. and Lu, J.J. (2011) Effect of Sliding Speed on Surface Modification and Tribological Behavior of Copper Graphite Composite. Tribology Letters, 41, 363-370.
https://doi.org/10.1007/s11249-010-9718-x
[9] Berthier, Y., Descartes, S., Busquet, M., et al. (2004) The Role and Effects of the Third Body in the Wheel-Rail Interaction. Fatigue Fracture of Engineering Material Structure, 27, 423-436.
https://doi.org/10.1111/j.1460-2695.2004.00764.x
[10] 陈伟东, 邹芹, 李艳国, 等. 自润滑轴承摩擦学性能数值模拟的研究进展[J]. 轴承, 2019(10): 58-67.
[11] Users’ Manual for Particle Flow Code in 2 Dimensions (PFC2D). Version 3.1. CG Itasca-Minnesota.