|
[1]
|
Zhang, J., Chen, G., Chaker, M., Rosei, F. and Ma, D. (2013) Gold Nanoparticle Decorated Ceria Nanotubes with Significantly High Catalytic Activity for the Reduction of Nitrophenol and Mechanism Study. Applied Catalysis B: Environmental, 132-133, 107-115. [Google Scholar] [CrossRef]
|
|
[2]
|
Sun, J., Fu, Y., He, G., Sun, X. and Wang, X. (2014) Catalytic Hydrogenation of Nitrophenols and Nitrotoluenes over a Palladium/Graphene Nanocomposite. Catalysis Science & Technology, 4, 1742-1748. [Google Scholar] [CrossRef]
|
|
[3]
|
Shen, W., Qu, Y., Pei, X., Li, S., You, S., Wang, J., Zhang, Z. and Zhou, J. (2017) Catalytic Reduction of 4-Nitro- phenol Using Gold Nanoparticles Biosynthesized by Cell-Free Extracts of Aspergillus sp. WL-Au. Journal of Hazardous Materials, 321, 299-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ma, Y., Wu, X. and Zhang, G. (2017) Core-Shell Ag@Pt Nanoparticles Supported on Sepiolite Nanofibers for the Catalytic Reduction of Nitrophenols in Water: Enhanced Catalytic Performance and DFT Study. Applied Catalysis B: Environmental, 205, 262-270. [Google Scholar] [CrossRef]
|
|
[5]
|
Lu, H., Yin, H., Liu, Y., Jiang, T. and Yu, L. (2008) Influence of Support on Catalytic Activity of Ni Catalysts in p-Nitrophenol Hydrogenation to p-Aminophenol. Catalysis Communications, 10, 313-316. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, R., Zhang, Q., Gu, Y., Tang, L., Li, C. and Zhang, Z. (2015) One-Pot Green Synthesis of Prussian Blue Nanocubes Decorated Reduced Graphene Oxide Using Mushroom Extract for Efficient 4-Nitrophenol Reduction. Analytica Chimica Acta, 853, 579-587. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, P., Shao, C., Zhang, Z., Zhang, M., Mu, J., Guo, Z. and Liu, Y. (2011) In Situ Assembly of Well-Dispersed Ag Nanoparticles (Ag NPs) on Electrospun Carbon Nanofibers (CNFs) for Catalytic Reduction of 4-Nitrophenol. Nanoscale, 3, 3357-3363. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, Y., Cao, Y., Xie, J., Jia, D., Qin, H. and Liang, Z. (2015) Facile Solid-State Synthesis of Ag/Graphene Oxide Nanocomposites as Highly Active and Stable Catalyst for the Reduction of 4-Nitrophenol. Catalysis Communications, 58, 21-25. [Google Scholar] [CrossRef]
|
|
[9]
|
Feng, J., Su, L., Ma, Y., Ren, C., Guo, Q. and Chen, X. (2013) CuFe2O4 Magnetic Nanoparticles: A Simple and Efficient Catalyst for the Reduction of Nitrophenol. Chemical Engineering Journal, 221, 16-24. [Google Scholar] [CrossRef]
|
|
[10]
|
Dai, Y., Yu, P., Zhang, X. and Zhuo, R. (2016) Gold Nanoparticles Stabilized by Amphiphilic Hyperbranched Polymers for Catalytic Reduction of 4-Nitrophenol. Journal of Catalysis, 337, 65-71. [Google Scholar] [CrossRef]
|
|
[11]
|
Herves, P., Perez-Lorenzo, M.L., Liz-Marzan, M., Dzubiella, J., Lu, Y. and Ballauff, M. (2012) Catalysis by Metallic Nanoparticles in Aqueous Solution: Model Reactions. Chemical Society Reviews, 41, 5577-5587. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, J., Hou, C., Huang, H., Zhang, L., Jiang, Z., Chen, G., Jia, Y., Kuang, Q., Xie, Z. and Zheng, L. (2013) Surfactant-Concentration-Dependent Shape Evolution of Au-Pd Alloy Nanocrystals from Rhombic Dodecahedron to Trisoctahedron and Hexoctahedron. Small, 9, 538-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gao, G., Jiao, Y., Waclawik, E.R. and Du, A. (2016) Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. Journal of the American Chemical Society, 138, 6292-6297. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bulushev, D.A., Zacharska, M., Lisitsyn, A.S., Podyacheva, O.Y., Hage, F.S., Ramasse, Q.M., Bangert, U. and Bulusheva, L.G. (2016) Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid. ACS Catalysis, 6, 3442-3451. [Google Scholar] [CrossRef]
|
|
[15]
|
Liao, G., Chen, J., Zeng, W., Yu, C., Yi, C. and Xu, Z. (2016) Facile Preparation of Uniform Nanocomposite Spheres with Loading Silver Nanoparticles on Polystyrene-Methyl Acrylic Acid Spheres for Catalytic Reduction of 4-Nitrophenol. The Journal of Physical Chemistry C, 120, 25935-25944. [Google Scholar] [CrossRef]
|
|
[16]
|
Shi, Y., Zhang, X., Zhu, Y., Tan, H., Chen, X. and Lu, Z.H. (2016) Core-Shell Structured Nanocomposites Ag@CeO2 as Catalysts for Hydrogenation of 4-Nitrophenol and 2-Nitroaniline. RSC Advances, 6, 47966-47973. [Google Scholar] [CrossRef]
|
|
[17]
|
Fu, Y., Huang, T., Jia, B., Zhu, J. and Wang, X. (2017) Reduction of Nitrophenols to Aminophenols under Concerted Catalysis by Au/g-C3N4 Contact System. Applied Catalysis B: Environmental, 202, 430-437. [Google Scholar] [CrossRef]
|
|
[18]
|
Saha, S., Pal, A., Kundu, S., Basu, S. and Pal, T. (2010) Photochemical Green Synthesis of Calcium-Alginate-Stabi- lized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir, 26, 2885-2893. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, H., Wang, J., Feng, Z., Lin, Y., Zhang, L. and Su, D. (2015) Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphenenanoshell with Robust Catalytic Performance. Small, 11, 5059-5064. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mitsudome, T., Arita, S., Mori, H., Mizugaki, T., Jitsukawa, K. and Kaneda, K. (2008) Supported Silver-Nanoparticle- Catalyzed Highly Efficient Aqueous Oxidation of Phenylsilanes to Silanols. Angewandte Chemie International Edition, 47, 7938-7940. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhen, W., Ma, J. and Lu, G. (2016) Small-Sized Ni (111) Particles in Metal-Organic Frameworks with Low Over-Po- tential for Visible Photocatalytic Hydrogen Generation. Applied Catalysis B: Environmental, 190, 12-25. [Google Scholar] [CrossRef]
|
|
[22]
|
Hao, Y., Shao, X., Li, B., Hu, L. and Wang, T. (2015) Mesoporous TiO2 Nanofibers with Controllable Au Loadings for Catalytic Reduction of 4-Nitrophenol. Materials Science in Semiconductor Processing, 40, 621-630. [Google Scholar] [CrossRef]
|
|
[23]
|
Steffan, M., Jakob, A., Claus, P. and Lang, H. (2009) Silica Supported Silver Nanoparticles from a Silver (I) Carboxylate: Highly Active Catalyst for Regioselective Hydrogenation. Catalysis Communications, 10, 437-441. [Google Scholar] [CrossRef]
|
|
[24]
|
Gerber, I.C. and Serp, P. (2020) A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 120, 1250-1349. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, Y., Mao, J., Meng, X., Yu, L., Deng, D. and Bao, X. (2019) Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 119, 1806-1854. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Fu, Q. and Bao, X. (2017) Surface Chemistry and Catalysis Confined under Two-Dimensional Materials. Chemical Society Reviews, 46, 1842-1874. [Google Scholar] [CrossRef]
|
|
[27]
|
Fu, Q. and Bao, X. (2019) Confined Microenvironment for Catalysis Control. Nature Catalysis, 2, 834-836. [Google Scholar] [CrossRef]
|
|
[28]
|
Kuriki, R., Sekizawa, K., Ishitani, O. and Maeda, K. (2015) Vis-ible-Light-Driven CO2 Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angewandte Chemie International Edition, 54, 2406-2409. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, X., Liu, Q., Wu, Q., Du, P., Zhu, J., Dai, S. and Yang, S. (2016) Incorporating Graphitic Carbon Nitride (g-C3N4) Quantum Dots into Bulk-Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement. Advanced Functional Materials, 26, 1719-1728. [Google Scholar] [CrossRef]
|
|
[30]
|
Cao, S., Low, J., Yu, J. and Jaroniec, M. (2015) Polymeric Photo-catalysts Based on Graphitic Carbon Nitride. Advanced Materials, 27, 2150-2176. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, X.H., Wang, X. and Antonietti, M. (2013) Mesoporous g-C3N4 Nanorods as Multifunctional Supports of Ultrafine Metal Nanoparticles: Hydrogen Generation from Water and Reduction of Nitrophenol with Tandem Catalysis in One Step. Chemical Science, 3, 2170-2174. [Google Scholar] [CrossRef]
|
|
[32]
|
Bhowmik, T., Kundu, M.K. and Barman, S. (2015) Ultra Small Gold Nanoparticles-Graphitic Carbon Nitride Composite: An Efficient Catalyst for Ultrafast Reduction of 4-Nitrophenol and Removal of Organic Dyes from Water. RSC Advances, 5, 38760-38773. [Google Scholar] [CrossRef]
|
|
[33]
|
Bai, X., Wang, L., Zong, R. and Zhu, Y. (2013) Photocatalytic Activity Enhanced via g-C3N4 Nanoplates to Nanorods. The Journal of Physical Chemistry C, 117, 9952-9961. [Google Scholar] [CrossRef]
|
|
[34]
|
Liang, Q., Li, Z., Yu, X., Huang, Z.H., Kang, F. and Yang, Q.H. (2015) Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 27, 4634-4639. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jun, Y.S., Park, J., Lee, S.U., Thomas, A., Hong, W.H. and Stucky, G.D. (2013) Three-Dimensional Macroscopic Assemblies of Low-Dimensional Carbon Nitrides for Enhanced Hydrogen Evolution. Angewandte Chemie International Edition, 52, 11083-11087. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Huang, Z.F., Song, J., Pan, L., Wang, Z., Zhang, X., Zou, J.J., Mi, W., Zhang, X. and Wang, L. (2015) Carbon Nitride with Simultaneous Porous Network and O-Doping for Efficient Solar-Energy-Driven Hydrogen Evolution. Nano Energy, 12, 646-656. [Google Scholar] [CrossRef]
|
|
[37]
|
Fageria, P., Uppala, S., Nazir, R., Gangopadhyay, S., Chang, C.H., Basu, M. and Pande, S. (2016) Synthesis of Mono-(Au & Pd) and Bimetallic (AuPd) Nanoparticles Using Carbon Nitride (C3N4) Quantum Dot via Photochemical Route for Nitrophenol Reduction. Langmuir, 32, 10054-10064. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, S.F., Li, J.P., Qian, K., Xu, W.P., Lu, Y., Huang, W.X. and Yu, S.H. (2010) Large Scale Photochemical Synthesis of M@TiO2 Nanocomposites (M = Ag, Pd, Au, Pt) and Their Optical Properties, CO Oxidation Performance, and Antibacterial Effect. Nano Research, 3, 244-255. [Google Scholar] [CrossRef]
|
|
[39]
|
Dong, C., Lian, C., Hu, S., Deng, Z., Gong, J., Li, M., Liu, H., Xing, M. and Zhang, J. (2018) Size-Dependent Activity and Selectivity of Carbon Dioxide Photocatalytic Reduction over Platinum Nanoparticles. Nature Communications, 9, 1252-1263. [Google Scholar] [CrossRef] [PubMed]
|