|
[1]
|
Ageitos, J.M., Sanchez-Perez, A., Calo-Mata, P., et al. (2017) Antimicrobial Peptides (AMPs): Ancient Compounds That Represent Novel Weapons in the Fight against Bacteria. Biochemical Pharmacology, 133, 117-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Harris, F., Dennison, S.R. and Phoenix, D.A. (2009) Anionic Antimicrobial Peptides from Eukaryotic Organisms. Current Protein Peptide Science, 10, 585-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Pasupuleti, M., Schmidtchen, A. and Malmsten, M. (2012) Antimicrobial Peptides: Key Components of the Innate Immune System. Critical Reviews in Biotechnology, 32, 143-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Brogden, K.A. (2005) Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria. Nature Reviews Microbiology, 3, 238-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, Y.D., Kung, C.W. and Chen, J.Y. (2010) Antiviral Activity by Fish Antimicrobial Peptides of Epinecid-in-1 and Hepcidin 1-5 against Nervous Necrosis Virus in Medaka. Peptides, 31, 1026-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lupetti, A., Van Dissel, J., Brouwer, C., et al. (2008) Human Antimicrobial Peptides’ Antifungal Activity against Aspergillus fumigatus. European Journal of Clinical Microbiology & Infectious Diseases, 27, 1125-1129. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Vizioli, J. and Salzet, M. (2002) Antimicrobial Peptides versus Parasitic Infections. Trends in Parasitology, 18, 475-476. [Google Scholar] [CrossRef]
|
|
[8]
|
Hoskin, D.W. and Ramamoorthy, A. (2008) Studies on Anticancer Activities of Antimicrobial Peptides. Biochimica et Biophysica Acta (BBA) Biomembranes, 1778, 357-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hilchie, A.L., Wuerth, K. and Hancock, R.E. (2013) Immune Modulation by Multifaceted Cationic Host Defense (Antimicrobial) Peptides. Nature Chemical Biology, 9, 761-768. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Malik, E., Dennison, S.R., Harris, F., et al. (2016) pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel), 9, 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ahmed, T.A.E. and Hammami, R. (2019) Recent Insights into Structure-Function Relationships of Antimicrobial Peptides. Journal of Food Biochemistry, 43, e12546. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dubos, R.J. (1939) Studies on a Bactericidal Agent Extracted from a Soil Bacillus: II. Protective Effect of the Bactericidal Agent against Experimental Pneumococcus Infections in Mice. Journal of Experimental Medicine, 70, 11-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dubos, R.J. and Hotchkiss, R.D. (1941) The Production of Bactericidal Substances by Aerobic Sporulating Bacilli. Journal of Experimental Medicine, 73, 629-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bednarska, N.G., Wren, B.W. and Willcocks, S.J. (2017) The Importance of the Glycosylation of Antimicrobial Peptides: Natural and Synthetic Approaches. Drug Discovery Today, 22, 919-926. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Conlon, B.P., Nakayasu, E.S., Fleck, L.E., et al. (2013) Activated ClpP Kills Persisters and Eradicates a Chronic Biofilm Infection. Nature, 503, 365-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Andrä, J., Berninghausen, O. and Leippe, M. (2001) Cecropins, Antibacterial Peptides from Insects and Mammals, Are Potently Fungicidal against Candida albicans. Medical Microbiology and Immunology (Berl.), 189, 169-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
The Antimicrobial Peptide Database (APD). http://aps.unmc.edu/ap/main.php
|
|
[18]
|
Vogel, H., Badapanda, C., Knorr, E., et al. (2014) RNA Sequencing Analysis Reveals Abundant Developmental Stage-Specific and Immunity-Related Genes in the Pollen Beetle Meligethes aeneus. Insect Molecular Biology, 23, 98-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Abry, M.F., Kimenyi, K.M., Masiga, D., et al. (2017) Comparative Genomics Identifies Male Accessory Gland Proteins in Five Glossina Species. Wellcome Open Research, 2, 73. [Google Scholar] [CrossRef]
|
|
[20]
|
Farouk, A.E., Ahamed, N.T., AlZahrani, O., et al. (2017) Inducible Antimicrobial Compounds (Halal) Production in Honey Bee Larvae (Apis mellifera) from Rumaida, Taif by Injecting of Various Dead Microorganisms Extracts. Journal of Applied Biology & Biotechnology, 5, 23-29.
|
|
[21]
|
Lee, J. and Lee, D.G. (2015) Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis. Journal of Microbiology and Biotechnology, 25, 759-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Price, D.P., Schilkey, F.D., Ulanov, A., et al. (2015) Small Mosquitoes, Large Implications: Crowding and Starvation Affects Gene Expression and Nutrient Accumulation in Aedes aegypti. Parasites & Vectors, 8, 252. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Allocca, M., Zola, S. and Bellosta, P. (2018) The Fruit Fly, Drosophila Melanogaster: Modeling of Human Diseases (Part II). In: Drosophila Melanogaster-Model for Recent Advances in Genetics and Therapeutics, IntechOpen, London. [Google Scholar] [CrossRef]
|
|
[24]
|
Thiyonila, B., Reneeta, N.P., Kannan, M., et al. (2018) Dung Beetle Gut Microbes: Diversity, Metabolic and Immunity Related Roles in Host System. International Journal of Scientific Innovations, 1, 84-91.
|
|
[25]
|
Manabe, T. and Kawasaki, K. (2017) D-Form KLKLLLLLKLK-NH2 Peptide Exerts Higher Antimicrobial Properties than Its L-Form Counterpart via an Association with Bacterial Cell Wall Components. Scientific Reports, 7, Article No. 43384. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, Y.T., Lee, M.R., Lee, S., et al. (2018) Tenebrio molitor Gram-Negative-Binding Protein 3 (TmGNBP3) Is Essential for Inducing Downstream Antifungal Tenecin 1 Gene Expression against Infection with Beauveria bassiana JEF-007. Insect Science, 6, 969-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Duwadi, D., Shrestha, A., Yilma, B., et al. (2018) Identification and Screening of Potent Antimicrobial Peptides in Arthropod Genomes. Peptides, 103, 26-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sheehan, G., Bergsson, G., McElvaney, N.G., et al. (2018) The Human Cathelicidin Antimicrobial Peptide LL-37 Promotes the Growth of the Pulmonary Pathogen Aspergillus fumigatus. Infection and Immunity, 86, IAI.00097-18. [Google Scholar] [CrossRef]
|
|
[29]
|
Schaal, J.B., Maretzky, T., Tran, D.Q., et al. (2018) Macrocyclic θ-Defensins Suppress Tumor Necrosis Factor-α (TNF-α) Shedding by Inhibition of TNF-α Converting Enzyme. The Journal of Biological Chemistry, 293, 2725-2734. [Google Scholar] [CrossRef]
|
|
[30]
|
Khurshid, Z., Najeeb, S., Mali, M., et al. (2017) Histatin Peptides: Pharmacological Functions and Their Applications in Dentistry. Saudi Pharmaceutical Journal, 25, 25-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Baxter, A.A., Lay, F.T., Poon, I.K.H., et al. (2017) Tumor Cell Membrane-Targeting Cationic Antimicrobial Peptides: Novel Insights into Mechanisms of Action and Therapeutic Prospects. Cellular and Molecular Life Sciences, 74, 3809-3825. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Panteleev, P.V., Balandin, S.V., Ivanov, V.T., et al. (2017) A Therapeutic Potential of Animal β-Hairpin Antimicrobial Peptides. Current Medicinal Chemistry, 24, 1724-1746. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Young-Speirs, M., Drouin, D., Cavalcante, P.A., et al. (2018) Host Defense Cathelicidins in Cattle: Types, Production, Bioactive Functions and Potential Therapeutic and Diagnostic Applications. International Journal of Antimicrobial Agents, 51, 813-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Savelyeva, A., Ghavami, S., Davoodpour, P., et al. (2014) An Overview of Brevinin Superfamily: Structure, Function and Clinical Perspectives. Advances in Experimental Medicine & Biology, 818, 197-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sun, T., Zhan, B. and Gao, Y. (2015) A Novel Cathelicidin from Bufo Bufo gargarizans Cantor Showed Specific Activity to Its Habitat Bacteria. Gene, 571, 172-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Upadhyay, R.K. (2018) Spider Venom Toxins, Its Purification, Solubilization, and Antimicrobial Activity. International Journal of Green Pharmacy, 12, S200-2014.
|
|
[37]
|
Belmadani, A., Semlali, A. and Rouabhia, M. (2018) Dermaseptin! S1 Decreases Candida albicans Growth, Biofilm Formation and the Expression of Hyphal Wall Protein 1 and Aspartic Protease Genes. Journal of Applied Microbiology, 125, 72-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tahir, H.M., Zaheer, A., Khan, A.A., et al. (2018) Antibacterial Potential of Venom Extracted from Wolf Spider, Lycosa terrestris (Araneae: Lycosiade). Indian Journal of Animal Science, 52, 286-290. [Google Scholar] [CrossRef]
|
|
[39]
|
Kuzmin, D.V., Emelianova, A.A., Kalashnikova, M.B., et al. (2017) Effect of N- and C-Terminal Modifications on Cytotoxic Properties of Antimicrobial Peptide Tachyplesin I. Bulletin of Experimental Biology and Medicine, 162, 754-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Coulen, S.C., Sanders, J.P. and Bruins, M.E. (2017) Valorisation of Proteins from Rubber Tree. Waste and Biomass Valorization, 8, 1027-1041. [Google Scholar] [CrossRef]
|
|
[41]
|
Thao, H.T., Lan, N.T.N. and Mau, C.H. (2017) Overexpression of VrPDF1 Gene Confers Resistance to Weevils in Transgenic Mung Bean Plant. [Google Scholar] [CrossRef]
|
|
[42]
|
Mills, S., Griffin, C., O’Connor, P.M., et al. (2017) A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus lactis, in Combination with Plantaricin from Lactobacillus plantarum. Applied and Environmental Microbiology, 83, 717-799. [Google Scholar] [CrossRef]
|
|
[43]
|
Su, Z., Leitch, J.J., Abbasi, F., et al. (2017) EIS and PM-IRRAS Studies of Alamethicin Ion Channels in a Tethered Lipid Bilayer. Journal of Electroanalytical Chemistry, 812, 213-220. [Google Scholar] [CrossRef]
|
|
[44]
|
Braïek, O.B., Morandi, S., Cremonesi, P., et al. (2018) Biotechnological Potential, Probiotic and Safety Properties of Newly Isolated Enterocin-Producing Enterococcus lactis Strains. LWT, 92, 361-370. [Google Scholar] [CrossRef]
|
|
[45]
|
Ebrahimipour, G.H., Khosravibabadi, Z., Sadeghi, H., et al. (2014) Isolation, Partial Purifification and Characterization of an Antimicrobial Compound, Produced by Bacillus atrophaeus. Jundishapur Journal of Microbiology, 7, e11802. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sharma, G., Dang, S., Gupta, S., et al. (2018) Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Medical Principles and Practice, 27, 186-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hammi, I., Delalande, F., Belkhou, R., et al. (2016) Maltaricin CPN, a New Class IIa Bacteriocin Produced by Carnobacterium Maltaromaticum CPN Isolated from Mould-Ripened Cheese. Journal of Applied Microbiology, 121, 1268-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chen, Y.S., Wu, H.C., Kuo, C.Y., et al. (2018) Leucocin C-607, a Novel Bacteriocin from the Multiple Bacteriocin-Producing Leuconostoc Pseudomesenteroides 607 Isolated from Persimmon. Probiotics and Antimicrobial Proteins, 10, 148-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Singh, R., Miriyala, S.S., Giri, L., et al. (2017) Identification of Unstructured Model for Subtilin Production through Bacillus subtilis Using Hybrid Genetic Algorithm. Process Biochemistry, 60, 1-12. [Google Scholar] [CrossRef]
|
|
[50]
|
Guzmán-Rodríguez, J.J., Ochoa-Zarzosa, A., López-Gómez, R., et al. (2015) Plant Antimicrobial Peptides Aspotential Anticancer Agents. BioMed Research International, 2015, Article ID: 735087. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhao, N., Pan, Y., Cheng, Z., et al. (2016) Lasso Peptide, a Highly Stable Structure and Designable Multi-Functional Backbone. Amino Acids, 48, 1347-1356. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Muhammad, S.A., Ali, A., Naz, A., et al. (2016) A New Broad-Spectrum Peptide Antibiotic Produced by Bacillus brevis Strain MH9 Isolated from Margalla Hills of Islamabad, Pakistan. International Journal of Peptide Research and Therapeutics, 22, 271-279. [Google Scholar] [CrossRef]
|
|
[53]
|
Araújo, C., Muñoz-Atienza, E., Poeta, P., et al. (2016) Characterization of Pediococcus acidilactici Strains Isolated from Rainbow Trout (Oncorhynchus mykiss) Feed and Larvae: Safety, DNA Fingerprinting, and Bacteriocinogenicity. Diseases of Aquatic Organisms, 119, 129-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Arakawa, K., Yoshida, S., Aikawa, H., et al. (2016) Production of a Bacteriocin-Like in Hibitory Substance by Leuconostoc mesenteroides subsp. Dextranicum 213M0 Isolated from Mongolian Fermented Mare Milk, Airag. Animal Science Journal, 87, 449-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Tulini, F.L., Lohans, C.T., Bordon, K.C., et al. (2014) Purification and Characterization of Antimicrobial Peptides from Fish Isolate Carnobacterium maltaromaticum C2: Carnobacteriocin X and Carnolysins A1 and A2. International Journal of Food Microbiology, 173, 81-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Bosma, T.U.S. (2017) Bacterial Surface Display and Screening of Thioether-Bridge-Containing Peptides. U.S. Patent No. 9, 651, 558.
|
|
[57]
|
Gajalakshmi, P. (2017) Selective Isolation and Characterization of Rare Actinomycetes Adopted in Glacier Soil of Manaliice Point and Its Activity against Mycobacterium spp. Journal of Microbiology and Biotechnology Research, 7, 1-10. [Google Scholar] [CrossRef]
|
|
[58]
|
Maldonado-Barragán, A., Caballero-Guerrero, B., Martín, V., et al. (2016) Purification and Genetic Characterization of Gassericin E, a Novel Co-Culture Inducible Bacteriocin from Lactobacillus gasseri EV1461 Isolated from the Vagina of a Healthy Woman. BMC Microbial, 16, 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Perez, R.H., Ishibashi, N., Inoue, T., et al. (2016) Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. Journal of Bacteriology, 198, 291-300. [Google Scholar] [CrossRef]
|
|
[60]
|
Brillet-Viel, A., Pilet, M.F., Courcoux, P., et al. (2016) Optimization of Growth and Bacteriocin Activity of the Food Bioprotective Carnobacterium divergens V41 in an Animal Origin Protein Free Medium. Frontiers in Marine Science, 3, 128. [Google Scholar] [CrossRef]
|
|
[61]
|
Wan, X., Li, R., Saris, P.E., et al. (2013) Genetic Characterisation and Heterologous Expression of Leucocin C, a Class IIa Bacteriocin from Leuconostoc carnosum 4010. Applied Microbiology and Biotechnology, 97, 3509-3518. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wang, Y., Shang, N., Qin, Y., et al. (2018) The Complete Genome Sequence of Lactobacillus plantarum LPL-1, a Novel Antibacterial Probiotic Producing Class IIa Bacteriocin. Journal of Biotechnology, 266, 84-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Le, T.N., Do, T.H., Nguyen, T.N., et al. (2014) Expression and Simple Purification Strategy for the Generation of Antimicrobial Active Enterocin P from Enterococcus faecium Expressed in Escherichia coli ER2566. Iranian Journal of Biotechnology, 12, 17-25. [Google Scholar] [CrossRef]
|
|
[64]
|
Venturina, D.H., Villegas, L.C., Perez, M.T.M., et al. (2016) Isolation and Identification of Subtilosin A-Producing Bacillus subtilis from Mongo Sprouts, Silage and Soil Samples in the Philippines. Asia Life Sciences, 25, 123-136.
|
|
[65]
|
Bhat, S.G. (2018) Modelling and Computational Sequence Analysis of a Bacteriocin Isolated from Bacillus licheniformis Strain BTHT. International Journal for Computational Biology, 7, 29-34. [Google Scholar] [CrossRef]
|
|
[66]
|
Hollmann, A., Martinez, M., Maturana, P., et al. (2018) Antimicrobial Peptides: Interaction with Model and Biological Membranes and Synergism with Chemical Antibiotics. Frontiers in Chemistry, 6, 204. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Zhao, H., Mattila, J.P., Holopainen, J.M., et al. (2001) Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin. Biophysical Journal, 81, 2979-2991. [Google Scholar] [CrossRef]
|
|
[68]
|
Sani, M.A. and Separovic, F. (2016) How Membrane-Active Peptides Get into Lipid Membranes. Accounts of Chemical Research, 49, 1130-1138. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Da Costa, J.P., Cova, M., Ferreira, R., et al. (2015) Antimicrobial Peptides: An Alternative for Innovative Medicines? Applied Microbiology and Biotechnology, 99, 2023-2040. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Mingeot-Leclercq, M.P. and Décout, J.L. (2016) Bacterial Lipid Membranes as Promising Targets to Fight Antimicrobial Resistance, Molecular Foundations and Illustration through the Renewal of Aminoglycoside Antibiotics and Emergence of Amphiphilic Aminoglycosides. Medicinal Chemistry Communications, 7, 586-611. [Google Scholar] [CrossRef]
|
|
[71]
|
Haney, E.F., Mansour, S.C. and Hancock, R.E.W. (2017) Antimicrobial Peptides: An Introduction. In: Methods in Molecular Biology, Vol. 1548, Humana Press, Totowa, 3-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Nguyen, L.T., Haney, E.F. and Vogel, H.J. (2011) The Expanding Scope of Antimicrobial Peptide Structures and Their Modes of Action. Trends in Biotechnology, 29, 464-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Yang, L., Harroun, T.A., Weiss, T.M., et al. (2001) Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. Biophysical Journal, 81, 1475-1485. [Google Scholar] [CrossRef]
|
|
[74]
|
Reddy, K., Yedery, R. and Aranha, C. (2005) Antimicrobial Peptides: Premises and Promises. International Journal of Antimicrobial Agents, 24, 536-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Brogden, K.A. (2005) Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria. Nature Reviews Microbiology, 3, 238-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Melo, M.N., Ferre, R. and Castanho, M.A. (2009) Antimicrobial Peptides: Linking Partition, Activity and High Membrane-Bound Concentrations. Nature Reviews Microbiology, 7, 245-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Gaspar, D., Veiga, A.S. and Castanho, M.A. (2013) From Antimicrobial to Anticancer Peptides. A Review. Frontiers in Microbiology, 4, 294. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Wu, M.H., Maier, E., Benz, R., et al. (1999) Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli. Biochemistry, 38, 7235-7242. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Hancock, R.E.W. and Patrzykat, A. (2002) Clinical Development of Cationic Antimicrobial Peptides: From Natural to Novel Antibiotics. Current Drug Targets—Infectious Disorders, 2, 79-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Cudic, M. and Otvos, L. (2002) Intracellular Targets of Antibacterial Peptides. Current Drug Targets, 3, 101-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Krizsan, A., Volke, D., Weinert, S., et al. (2014) Insect-Derived Proline-Rich Antimicrobial Peptides Kill Bacteria by Inhibiting Bacterial Protein Translation at the 70S Ribosome. Angewandte Chemie International Edition in English, 53, 12236-12239. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Mansour, S.C., Pena, O.M. and Hancock, R.E. (2014) Host Defense Peptides: Frontline Immunomodulators. Trends in Immunology, 35, 443-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews, 55, 27-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Carrera, M., Böhme, K., Gallardo, J.M., et al. (2017) Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Net Works, Virulence Factors and Species-Specific Peptide Biomarkers. Frontiers in Microbiology, 8, 2458. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Nagarajan, K., Marimuthu, S.K., Palanisamy, S., et al. (2018) Peptide Therapeutics versus Superbugs: Highlight on Current Research and Advancements. International Journal of Peptide Research and Therapeutics, 24, 19-33. [Google Scholar] [CrossRef]
|
|
[86]
|
Le, C.F., Fang, C.M. and Sekaran, S.D. (2017) Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 61, e02340-16. [Google Scholar] [CrossRef]
|
|
[87]
|
Gordon, Y.J., Romanowski, E.G. and McDermott, A.M. (2005) A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs. Current Eye Research, 30, 505-515. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Mirski, T., Niemcewicz, M., Bartoszcze, M., et al. (2017) Utilisation of Peptides against Microbial Infections—A Review. Annals of Agricultural and Environmental Medicine, 25, 205-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Wuerth, K. (2017) Combating Pseudomonas aeruginosa Lung Infections Using Synthetic Host Defense Peptides. Doctoral Dissertation, University of British Columbia, Vancouver.
|
|
[90]
|
Conlon, J.M. and Sonnevend, A. (2011) Clinical Applications of Amphibian Antimicrobial Peptides. Journal of Medical Sciences, 4, 62-72. [Google Scholar] [CrossRef]
|
|
[91]
|
Shin, S.H., Lee, Y.S., Shin, Y.P., et al. (2013) Therapeutic Efficacy of Halocidinderived Peptide HG1 in a Mouse Model of Candida albicans Oral Infection. Journal of Antimicrobial Chemotherapy, 68, 1152-1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Migoń, D., Neubauer, D. and Kamysz, W. (2018) Hydrocarbon Stapled Antimicrobial Peptides. The Protein Journal, 37, 2-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Haney, E.F., Pletzer, D. and Hancock, R.E. (2018) Impact of Host Defense Peptides on Chronic Wounds and Infections. In: Recent Clinical Techniques, Results, and Research in Wounds, Springer, Cham, 1-17. [Google Scholar] [CrossRef]
|
|
[94]
|
Greber, K.E. and Dawgul, M. (2017) Antimicrobial Peptides under Clinical Trials. Current Topics in Medicinal Chemistry, 17, 620-628. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Sachdeva, S. (2017) Peptides as “Drugs”: The Journey So Far. International Journal of Peptide Research and Therapeutics, 23, 49-60. [Google Scholar] [CrossRef]
|
|
[96]
|
Lau, J.L. and Dunn, M.K. (2018) Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorganic & Medicinal Chemistry, 26, 2700-2707. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Raucher, D. and Ryu, J.S. (2015) Cell-Penetrating Peptides: Strategies for Anticancer Treatment. Trends in Molecular Medicine, 21, 560-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Ghosh, C. and Haldar, J. (2015) Membrane-Active Small Molecules: Designs Inspired by Antimicrobial Peptides. ChemMedChem, 10, 1606-1624. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Cortes-Penfield, N., Oliver, N.T., Hunter, A., et al. (2018) Daptomycin and Combination Daptomycin-Ceftaroline as Salvage Therapy for Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia. The Journal of Infectious Diseases (London), 50, 643-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Gagliardini, E., Benigni, A. and Perico, N. (2017) Pharmacological Induction of Kidney Regeneration. In: Orlando, G., Remuzzi, G. and Williams, D.F., Eds., Kidney Transplantation, Bioengineering and Regeneration, Academic Press, Cambridge, 1025-1037. [Google Scholar] [CrossRef]
|
|
[101]
|
Jepson, A.K., Schwarz-Linek, J., Ryan, L., et al. (2016) What Is the “Minimum Inhibitory Concentration” (MIC) of Pexiganan Acting on Escherichia coli? A Cautionary Case Study. Advances in Experimental Medicine and Biology, 915, 33-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Ng, S.M.S., Teo, S.W., Yong, Y.E., et al. (2017) Preliminary Investigations into Developing All-D Omiganan for Treating Mupirocin-Resistant MRSA Skin Infections. Chemical Biology & Drug Design, 90, 1155-1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Mohammad, H., Thangamani, S. and Seleem, M.N. (2015) Antimicrobial Peptides and Peptidomimetics-Potent Therapeutic Allies for Staphylococcal Infections. Current Pharmaceutical Design, 21, 2073-2088. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Morici, P., Fais, R., Rizzato, C., et al. (2016) Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11. PLoS ONE, 11, e0167470. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Javia, A., Amrutiya, J., Lalani, R., et al. (2018) Antimicrobial Peptide Delivery: An Emerging Therapeutic for the Treatment of Burn and Wounds. Therapeutic Delivery, 9, 375-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
De Lorenzi, E., Chiari, M., Colombo, R., et al. (2018) Evidence That the Human Innate Immune Peptide LL-37 May Be a Binding Partner of Abeta and Inhibitor of Fibril Assembly. Biophysical Journal, 114, 393a. [Google Scholar] [CrossRef]
|
|
[107]
|
Menko, A.S. (2015) Method to Treat and Prevent Posterior Capsule Opacification. Patent 8, 999, 370.
|
|
[108]
|
Moorthy, N.S.H.N., Pratheepa, V. and Manivannan, E. (2018) Natural Product Derived Drugs for Immunological and Inflammatory Diseases. Natural Products in Clinical Trials, 1, 1-31. [Google Scholar] [CrossRef]
|
|
[109]
|
Deslouches, B. and Di, Y.P. (2017) Antimicrobial Peptides with Selective Antitumor Mechanisms: Prospect for Anticancer Applications. Oncotarget, 8, 46635-46651. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Dösler, S. (2017) Antimicrobial Peptides: Coming to the End of Antibiotic Era, the Most Promising Agents. İstanbul Journal of Pharmacy, 47, 72-76. [Google Scholar] [CrossRef]
|
|
[111]
|
Mangoni, M.L., McDermott, A.M. and Zasloff, M. (2016) Antimicrobial Peptides and Wound Healing: Biological and Therapeutic Considerations. Experimental Dermatology, 25, 167-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Krutetskaya, Z.I., Melnitskaya, A.V., Antonov, V.G., et al. (2017) Lipoxygenases Modulate the Effect of Glutoxim on Na+ Transport in the Frog Skin Epithelium. Doklady Biochemistry and Biophysics, 474, 193-195. [Google Scholar] [CrossRef]
|
|
[113]
|
Harvey, A., Edrada-Ebel, R. and Quinn, R.J. (2015) The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nature Reviews Drug Discovery, 14, 111-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[114]
|
Butler, M.S., Blaskovich, M.A. and Cooper, M.A. (2017) Antibiotics in the Clinical Pipeline at the End of 2015. The Journal of Antibiotics (Tokyo), 70, 3-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[115]
|
Giuliani, A., Pirri, G. and Nicoletto, S. (2007) Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics. Open Life Sciences, 2, 1-33. [Google Scholar] [CrossRef]
|
|
[116]
|
Feng, Q., Huang, Y. and Chen, M. (2015) Functional Synergy of α-Helical Antimicrobial Peptides and Traditional Antibiotics against Gram-Negative and Gram-Positive Bacteria in Vitro and in Vivo. European Journal of Clinical Microbiology & Infectious Diseases, 34, 197-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
李惠钰. 金环蛇毒抗菌肽能否成为下一个抗感染“明星” [N]. 中国科学报, 2019-01-21(5).
|